These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
4. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
5. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. Yang J; Mezmouk S; Baumgarten A; Buckler ES; Guill KE; McMullen MD; Mumm RH; Ross-Ibarra J PLoS Genet; 2017 Sep; 13(9):e1007019. PubMed ID: 28953891 [TBL] [Abstract][Full Text] [Related]
6. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data. Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202 [TBL] [Abstract][Full Text] [Related]
7. Genomic prediction applied to multiple traits and environments in second season maize hybrids. de Oliveira AA; Resende MFR; Ferrão LFV; Amadeu RR; Guimarães LJM; Guimarães CT; Pastina MM; Margarido GRA Heredity (Edinb); 2020 Aug; 125(1-2):60-72. PubMed ID: 32472060 [TBL] [Abstract][Full Text] [Related]
8. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods. Barreto CAV; das Graças Dias KO; de Sousa IC; Azevedo CF; Nascimento ACC; Guimarães LJM; Guimarães CT; Pastina MM; Nascimento M Sci Rep; 2024 Jan; 14(1):1062. PubMed ID: 38212638 [TBL] [Abstract][Full Text] [Related]
9. Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs. Seye AI; Bauland C; Charcosset A; Moreau L Theor Appl Genet; 2020 Jun; 133(6):1995-2010. PubMed ID: 32185420 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Technow F; Riedelsheimer C; Schrag TA; Melchinger AE Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443 [TBL] [Abstract][Full Text] [Related]
11. Genomic Prediction of Complex Traits in an Allogamous Annual Crop: The Case of Maize Single-Cross Hybrids. Martins Oliveira IC; Bernardeli A; Soler Guilhen JH; Pastina MM Methods Mol Biol; 2022; 2467():543-567. PubMed ID: 35451790 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis of tolerance to combined drought and heat stress in tropical maize. Elmyhun M; Abate E; Abate A; Teklewold A; Menkir A PLoS One; 2024; 19(6):e0302272. PubMed ID: 38900753 [TBL] [Abstract][Full Text] [Related]
13. Potential use of molecular markers for prediction of genotypic values in hybrid maize performance. Balestre M; Von Pinho RG; Souza JC; Oliveira RL Genet Mol Res; 2009 Oct; 8(4):1292-306. PubMed ID: 19876871 [TBL] [Abstract][Full Text] [Related]
14. Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts. Roth M; Beugnot A; Mary-Huard T; Moreau L; Charcosset A; Fiévet JB Genetics; 2022 Apr; 220(4):. PubMed ID: 35150258 [TBL] [Abstract][Full Text] [Related]
15. On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids. Galli G; Alves FC; Morosini JS; Fritsche-Neto R PLoS One; 2020; 15(2):e0228724. PubMed ID: 32032385 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association study of maize plant architecture using F Zhao Y; Wang H; Bo C; Dai W; Zhang X; Cai R; Gu L; Ma Q; Jiang H; Zhu J; Cheng B Plant Mol Biol; 2019 Jan; 99(1-2):1-15. PubMed ID: 30519826 [TBL] [Abstract][Full Text] [Related]
17. The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. Rogers AR; Dunne JC; Romay C; Bohn M; Buckler ES; Ciampitti IA; Edwards J; Ertl D; Flint-Garcia S; Gore MA; Graham C; Hirsch CN; Hood E; Hooker DC; Knoll J; Lee EC; Lorenz A; Lynch JP; McKay J; Moose SP; Murray SC; Nelson R; Rocheford T; Schnable JC; Schnable PS; Sekhon R; Singh M; Smith M; Springer N; Thelen K; Thomison P; Thompson A; Tuinstra M; Wallace J; Wisser RJ; Xu W; Gilmour AR; Kaeppler SM; De Leon N; Holland JB G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585867 [TBL] [Abstract][Full Text] [Related]
18. Changes in genome content generated via segregation of non-allelic homologs. Liu S; Ying K; Yeh CT; Yang J; Swanson-Wagner R; Wu W; Richmond T; Gerhardt DJ; Lai J; Springer N; Nettleton D; Jeddeloh JA; Schnable PS Plant J; 2012 Nov; 72(3):390-9. PubMed ID: 22731681 [TBL] [Abstract][Full Text] [Related]
20. Diallel and prediction (REML/BLUP) for yield components in intervarietal maize hybrids. Carvalho IR; de Pelegrin AJ; Szareski VJ; Ferrari M; da Rosa TC; Martins TS; Dos Santos NL; Nardino M; de Souza VQ; de Oliveira AC; da Maia LC Genet Mol Res; 2017 Aug; 16(3):. PubMed ID: 28873210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]