These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30382520)

  • 1. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin.
    Jarvis K; Woodward M; Debold EP; Walcott S
    J Muscle Res Cell Motil; 2018 Aug; 39(3-4):135-147. PubMed ID: 30382520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms.
    Woodward M; Debold EP
    Front Physiol; 2018; 9():862. PubMed ID: 30042692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate enhances myosin-powered actin filament velocity under acidic conditions in a motility assay.
    Debold EP; Turner MA; Stout JC; Walcott S
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1401-8. PubMed ID: 21346239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidosis decreases the Ca
    Unger M; Debold EP
    Am J Physiol Cell Physiol; 2019 Oct; 317(4):C714-C718. PubMed ID: 31339771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin's powerstroke occurs prior to the release of phosphate from the active site.
    Scott B; Marang C; Woodward M; Debold EP
    Cytoskeleton (Hoboken); 2021 May; 78(5):185-198. PubMed ID: 34331410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.
    Brizendine RK; Alcala DB; Carter MS; Haldeman BD; Facemyer KC; Baker JE; Cremo CR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11235-40. PubMed ID: 26294254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay.
    Debold EP; Longyear TJ; Turner MA
    J Appl Physiol (1985); 2012 Nov; 113(9):1413-22. PubMed ID: 23019317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements.
    Walcott S; Warshaw DM; Debold EP
    Biophys J; 2012 Aug; 103(3):501-510. PubMed ID: 22947866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of thin filament activation: from single molecule to muscle.
    Longyear T; Walcott S; Debold EP
    Sci Rep; 2017 May; 7(1):1822. PubMed ID: 28500282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth muscle myosin: a high force-generating molecular motor.
    VanBuren P; Guilford WH; Kennedy G; Wu J; Warshaw DM
    Biophys J; 1995 Apr; 68(4 Suppl):256S-258S; 258S-259S. PubMed ID: 7787086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent insights into the relative timing of myosin's powerstroke and release of phosphate.
    Debold EP
    Cytoskeleton (Hoboken); 2021 Sep; 78(9):448-458. PubMed ID: 35278035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle Fatigue from the Perspective of a Single Crossbridge.
    Debold EP; Fitts RH; Sundberg CW; Nosek TM
    Med Sci Sports Exerc; 2016 Nov; 48(11):2270-2280. PubMed ID: 27434086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accelerated state of myosin-based actin motility.
    Hooft AM; Maki EJ; Cox KK; Baker JE
    Biochemistry; 2007 Mar; 46(11):3513-20. PubMed ID: 17302393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unrevealed part of myosin's powerstroke accounts for high efficiency of muscle contraction.
    Bibó A; Károlyi G; Kovács M
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2325-2333. PubMed ID: 28559160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation.
    Liu C; Karabina A; Meller A; Bhattacharjee A; Agostino CJ; Bowman GR; Ruppel KM; Spudich JA; Leinwand LA
    Proc Natl Acad Sci U S A; 2024 Feb; 121(9):e2315472121. PubMed ID: 38377203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel actin binding site of myosin required for effective muscle contraction.
    Várkuti BH; Yang Z; Kintses B; Erdélyi P; Bárdos-Nagy I; Kovács AL; Hári P; Kellermayer M; Vellai T; Málnási-Csizmadia A
    Nat Struct Mol Biol; 2012 Feb; 19(3):299-306. PubMed ID: 22343723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle.
    Brenner B; Eisenberg E
    Basic Res Cardiol; 1987; 82 Suppl 2():3-16. PubMed ID: 2959261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of Myosin molecules.
    Debold EP; Walcott S; Woodward M; Turner MA
    Biophys J; 2013 Nov; 105(10):2374-84. PubMed ID: 24268149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation alters myosin-actin interaction and force generation in skeletal muscle filaments.
    Elkrief D; Cheng YS; Matusovsky OS; Rassier DE
    Am J Physiol Cell Physiol; 2022 Oct; 323(4):C1206-C1214. PubMed ID: 36062880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.