These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 30382601)
1. Cytogenetic relationships, polyploid origin and taxonomic issues in Paspalum species: inter- and intraspecific hybrids between a sexual synthetic autotetraploid and five wild apomictic tetraploid species. Novo PE; Galdeano F; Espinoza F; Quarin CL Plant Biol (Stuttg); 2019 Mar; 21(2):267-277. PubMed ID: 30382601 [TBL] [Abstract][Full Text] [Related]
2. Segregation for sexual seed production in Paspalum as directed by male gametes of apomictic triploid plants. Martínez EJ; Acuña CA; Hojsgaard DH; Tcach MA; Quarin CL Ann Bot; 2007 Dec; 100(6):1239-47. PubMed ID: 17766843 [TBL] [Abstract][Full Text] [Related]
3. Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass (Paspalum notatum Flüggé). Sandhu S; Blount AR; Quesenberry KH; Altpeter F Theor Appl Genet; 2010 Sep; 121(5):919-29. PubMed ID: 20512558 [TBL] [Abstract][Full Text] [Related]
4. Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids. Sandhu S; James VA; Quesenberry KH; Altpeter F Theor Appl Genet; 2009 Nov; 119(8):1383-95. PubMed ID: 19701742 [TBL] [Abstract][Full Text] [Related]
5. Reproductive and Agronomic Characterization of Novel Apomictic Hybrids of Brugnoli EA; Zilli AL; Marcón F; Caballero E; Martínez EJ; Acuña CA Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36980903 [TBL] [Abstract][Full Text] [Related]
6. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ortiz JP; Quarin CL; Pessino SC; Acuña C; Martínez EJ; Espinoza F; Hojsgaard DH; Sartor ME; Cáceres ME; Pupilli F Ann Bot; 2013 Sep; 112(5):767-87. PubMed ID: 23864004 [TBL] [Abstract][Full Text] [Related]
7. Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy. Galdeano F; Urbani MH; Sartor ME; Honfi AI; Espinoza F; Quarin CL J Plant Res; 2016 Jul; 129(4):697-710. PubMed ID: 26965283 [TBL] [Abstract][Full Text] [Related]
8. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. Hojsgaard D; Greilhuber J; Pellino M; Paun O; Sharbel TF; Hörandl E New Phytol; 2014 Dec; 204(4):1000-12. PubMed ID: 25081588 [TBL] [Abstract][Full Text] [Related]
9. First microsatellite markers for Paspalum plicatulum (Poaceae) characterization and cross-amplification in different Paspalum species of the Plicatula group. Oliveira FA; Cidade FW; Fávero AP; Vigna BB; Souza AP BMC Res Notes; 2016 Dec; 9(1):511. PubMed ID: 27955703 [TBL] [Abstract][Full Text] [Related]
10. Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae). Krahulcová A; Krahulec F; Rosenbaumová R Sex Plant Reprod; 2011 Mar; 24(1):63-74. PubMed ID: 20978805 [TBL] [Abstract][Full Text] [Related]
11. A reference floral transcriptome of sexual and apomictic Paspalum notatum. Ortiz JPA; Revale S; Siena LA; Podio M; Delgado L; Stein J; Leblanc O; Pessino SC BMC Genomics; 2017 Apr; 18(1):318. PubMed ID: 28431521 [TBL] [Abstract][Full Text] [Related]
12. A molecular map of the apomixis-control locus in Paspalum procurrens and its comparative analysis with other species of Paspalum. Hojsgaard DH; Martínez EJ; Acuña CA; Quarin CL; Pupilli F Theor Appl Genet; 2011 Oct; 123(6):959-71. PubMed ID: 21713535 [TBL] [Abstract][Full Text] [Related]
13. Male fertility versus sterility, cytotype, and DNA quantitative variation in seed production in diploid and tetraploid sea lavenders (Limonium sp., Plumbaginaceae) reveal diversity in reproduction modes. Róis AS; Teixeira G; Sharbel TF; Fuchs J; Martins S; Espírito-Santo D; Caperta AD Sex Plant Reprod; 2012 Dec; 25(4):305-18. PubMed ID: 23086613 [TBL] [Abstract][Full Text] [Related]
14. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. Hojsgaard DH; Martínez EJ; Quarin CL New Phytol; 2013 Jan; 197(1):336-347. PubMed ID: 23127139 [TBL] [Abstract][Full Text] [Related]
15. Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Stein J; Quarin CL; Martínez EJ; Pessino SC; Ortiz JP Theor Appl Genet; 2004 Jun; 109(1):186-91. PubMed ID: 14985979 [TBL] [Abstract][Full Text] [Related]
16. Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Kantama L; Sharbel TF; Schranz ME; Mitchell-Olds T; de Vries S; de Jong H Proc Natl Acad Sci U S A; 2007 Aug; 104(35):14026-31. PubMed ID: 17704257 [TBL] [Abstract][Full Text] [Related]
17. Physical mapping of rDNA genes corroborates allopolyploid origin in apomictic Brachiaria brizantha. Nielen S; Almeida LM; Carneiro VT; Araujo AC Sex Plant Reprod; 2010 Mar; 23(1):45-51. PubMed ID: 20165963 [TBL] [Abstract][Full Text] [Related]
18. Cytogenetic evidence of mixed disomic and polysomic inheritance in an allotetraploid (AABB) Musa genotype. Jeridi M; Perrier X; Rodier-Goud M; Ferchichi A; D'Hont A; Bakry F Ann Bot; 2012 Dec; 110(8):1593-606. PubMed ID: 23087127 [TBL] [Abstract][Full Text] [Related]