These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30382921)

  • 1. Satellite cells fail to contribute to muscle repair but are functional in Pompe disease (glycogenosis type II).
    Lagalice L; Pichon J; Gougeon E; Soussi S; Deniaud J; Ledevin M; Maurier V; Leroux I; Durand S; Ciron C; Franzoso F; Dubreil L; Larcher T; Rouger K; Colle MA
    Acta Neuropathol Commun; 2018 Oct; 6(1):116. PubMed ID: 30382921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease.
    Schaaf GJ; van Gestel TJM; In 't Groen SLM; de Jong B; Boomaars B; Tarallo A; Cardone M; Parenti G; van der Ploeg AT; Pijnappel WWMP
    Acta Neuropathol Commun; 2018 Nov; 6(1):119. PubMed ID: 30404653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches.
    Takikita S; Myerowitz R; Zaal K; Raben N; Plotz PH
    Mol Genet Metab; 2009 Apr; 96(4):208-17. PubMed ID: 19167256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.
    Shemesh A; Wang Y; Yang Y; Yang GS; Johnson DE; Backer JM; Pessin JE; Zong H
    Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1251-9. PubMed ID: 25231351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
    Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ
    PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.
    Raben N; Fukuda T; Gilbert AL; de Jong D; Thurberg BL; Mattaliano RJ; Meikle P; Hopwood JJ; Nagashima K; Nagaraju K; Plotz PH
    Mol Ther; 2005 Jan; 11(1):48-56. PubMed ID: 15585405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease.
    Fukuda T; Ahearn M; Roberts A; Mattaliano RJ; Zaal K; Ralston E; Plotz PH; Raben N
    Mol Ther; 2006 Dec; 14(6):831-9. PubMed ID: 17008131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand..
    Raben N; Takikita S; Pittis MG; Bembi B; Marie SK; Roberts A; Page L; Kishnani PS; Schoser BG; Chien YH; Ralston E; Nagaraju K; Plotz PH
    Autophagy; 2007; 3(6):546-52. PubMed ID: 17592248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.
    Takikita S; Schreiner C; Baum R; Xie T; Ralston E; Plotz PH; Raben N
    PLoS One; 2010 Dec; 5(12):e15239. PubMed ID: 21179212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease.
    Raben N; Baum R; Schreiner C; Takikita S; Mizushima N; Ralston E; Plotz P
    Autophagy; 2009 Jan; 5(1):111-3. PubMed ID: 19001870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of robust satellite cell activation and muscle regeneration during the progression of Pompe disease.
    Schaaf GJ; van Gestel TJ; Brusse E; Verdijk RM; de Coo IF; van Doorn PA; van der Ploeg AT; Pijnappel WW
    Acta Neuropathol Commun; 2015 Oct; 3():65. PubMed ID: 26510925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease.
    Raben N; Hill V; Shea L; Takikita S; Baum R; Mizushima N; Ralston E; Plotz P
    Hum Mol Genet; 2008 Dec; 17(24):3897-908. PubMed ID: 18782848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy in skeletal muscle: implications for Pompe disease.
    Shea L; Raben N
    Int J Clin Pharmacol Ther; 2009; 47 Suppl 1(Suppl 1):S42-7. PubMed ID: 20040311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal neuropathologic and behavioral phenotype of 6neo/6neo Pompe disease mice.
    Sidman RL; Taksir T; Fidler J; Zhao M; Dodge JC; Passini MA; Raben N; Thurberg BL; Cheng SH; Shihabuddin LS
    J Neuropathol Exp Neurol; 2008 Aug; 67(8):803-18. PubMed ID: 18648322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy.
    McCall AL; Stankov SG; Cowen G; Cloutier D; Zhang Z; Yang L; Clement N; Falk DJ; Byrne BJ
    Curr Gene Ther; 2019; 19(3):197-207. PubMed ID: 31223086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airway smooth muscle dysfunction in Pompe (
    Keeler AM; Liu D; Zieger M; Xiong L; Salemi J; Bellvé K; Byrne BJ; Fuller DD; ZhuGe R; ElMallah MK
    Am J Physiol Lung Cell Mol Physiol; 2017 Jun; 312(6):L873-L881. PubMed ID: 28336814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease.
    Liang Q; Vlaar EC; Pijnenburg JM; Rijkers E; Demmers JAA; Vulto AG; van der Ploeg AT; van Til NP; Pijnappel WWMP
    J Proteomics; 2024 Jan; 291():105037. PubMed ID: 38288553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect in degradation of glycogenin-exposed residual glycogen in lysosomes is the fundamental pathomechanism of Pompe disease.
    Zhang N; Liu F; Zhao Y; Sun X; Wen B; Lu JQ; Yan C; Li D
    J Pathol; 2024 May; 263(1):8-21. PubMed ID: 38332735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice.
    Maga JA; Zhou J; Kambampati R; Peng S; Wang X; Bohnsack RN; Thomm A; Golata S; Tom P; Dahms NM; Byrne BJ; LeBowitz JH
    J Biol Chem; 2013 Jan; 288(3):1428-38. PubMed ID: 23188827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease.
    Fukuda T; Ewan L; Bauer M; Mattaliano RJ; Zaal K; Ralston E; Plotz PH; Raben N
    Ann Neurol; 2006 Apr; 59(4):700-8. PubMed ID: 16532490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.