BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 30383469)

  • 1. Development of a High-Throughput Cul3-Keap1 Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay for Identifying Nrf2 Activators.
    Poore DD; Hofmann G; Wolfe LA; Qi H; Jiang M; Fischer M; Wu Z; Sweitzer TD; Chakravorty S; Donovan B; Li H
    SLAS Discov; 2019 Feb; 24(2):175-189. PubMed ID: 30383469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly.
    Adamson RJ; Payne NC; Bartual SG; Mazitschek R; Bullock AN
    Free Radic Biol Med; 2023 Aug; 204():215-225. PubMed ID: 37156295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis.
    Dikovskaya D; Appleton PL; Bento-Pereira C; Dinkova-Kostova AT
    Chem Res Toxicol; 2019 Mar; 32(3):500-512. PubMed ID: 30793592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Changes in Keap1-Nrf2 Protein Complex Conformation in Individual Cells by FLIM-FRET.
    Dikovskaya D; Dinkova-Kostova AT
    Curr Protoc Toxicol; 2020 Sep; 85(1):e96. PubMed ID: 32786061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex.
    Baird L; Llères D; Swift S; Dinkova-Kostova AT
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15259-64. PubMed ID: 23986495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.
    Wible RS; Tran QT; Fathima S; Sutter CH; Kensler TW; Sutter TR
    Mol Pharmacol; 2018 Apr; 93(4):297-308. PubMed ID: 29367259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening approaches for the identification of Nrf2-Keap1 protein-protein interaction inhibitors targeting hot spot residues.
    Asano W; Hantani R; Uhara T; Debaene F; Nomura A; Yamaguchi K; Adachi T; Otake K; Harada K; Hantani Y
    SLAS Discov; 2024 Mar; 29(2):100125. PubMed ID: 37935317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the C2 substituents on the 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid scaffold for better inhibition of Keap1-Nrf2 protein-protein interaction.
    Abed DA; Ali AR; Lee S; Nguyen MU; Verzi MP; Hu L
    Eur J Med Chem; 2023 Apr; 252():115302. PubMed ID: 36989811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cullin 3 mutant causing familial hyperkalemic hypertension lacks normal activity in the kidney.
    Maeoka Y; Cornelius RJ; Ferdaus MZ; Sharma A; Nguyen LT; McCormick JA
    Am J Physiol Renal Physiol; 2022 Nov; 323(5):F564-F576. PubMed ID: 36007890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural modification of C2-substituents on 1,4-bis(arylsulfonamido)benzene or naphthalene-N,N'-diacetic acid derivatives as potent inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Lee S; Ali AR; Abed DA; Nguyen MU; Verzi MP; Hu L
    Eur J Med Chem; 2024 Feb; 265():116104. PubMed ID: 38159482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2 depletion in the context of loss-of-function Keap1 leads to mitolysosome accumulation.
    Dayalan Naidu S; Angelova PR; Knatko EV; Leonardi C; Novak M; de la Vega L; Ganley IG; Abramov AY; Dinkova-Kostova AT
    Free Radic Biol Med; 2023 Nov; 208():478-493. PubMed ID: 37714439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance.
    Gu L; Du Y; Chen J; Hasan MN; Clayton YD; Matye DJ; Friedman JE; Li T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320934121. PubMed ID: 38630726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the role of Sigma 1 receptor and Cullin3 in retinal photoreceptor cells.
    Wang J; Barwick SR; Xiao H; Smith SB
    Free Radic Biol Med; 2023 Aug; 205():214-223. PubMed ID: 37328017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NRF2-p97-NRF2 negative feedback loop.
    Shakya A; Liu P; Godek J; McKee NW; Dodson M; Anandhan A; Ooi A; Garcia JGN; Costa M; Chapman E; Zhang DD
    Redox Biol; 2023 Sep; 65():102839. PubMed ID: 37573837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TR-FRET-based high-throughput screening assay for identification of UBC13 inhibitors.
    Madiraju C; Welsh K; Cuddy MP; Godoi PH; Pass I; Ngo T; Vasile S; Sergienko EA; Diaz P; Matsuzawa S; Reed JC
    J Biomol Screen; 2012 Feb; 17(2):163-76. PubMed ID: 22034497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiplexed time-resolved fluorescence resonance energy transfer ultrahigh-throughput screening assay for targeting the SMAD4-SMAD3-DNA complex.
    Ouyang W; Li Q; Niu Q; Qui M; Fu H; Du Y; Mo X
    J Mol Cell Biol; 2024 Apr; 15(11):. PubMed ID: 37968137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction.
    Xiong J; Pecchi VG; Qui M; Ivanov AA; Mo X; Niu Q; Chen X; Fu H; Du Y
    Assay Drug Dev Technol; 2018; 16(2):96-106. PubMed ID: 29634317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling.
    Chauhan N; Chaunsali L; Deshmukh P; Padmanabhan B
    Bioinformation; 2013; 9(9):450-5. PubMed ID: 23847398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.