BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30384161)

  • 1. Use of magnetic susceptibility to assess metals concentration in soils developed on a range of parent materials.
    Ayoubi S; Adman V; Yousefifard M
    Ecotoxicol Environ Saf; 2019 Jan; 168():138-145. PubMed ID: 30384161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of land use conversion on heavy metals and magnetic minerals on water reservoir riparian soils.
    Yang D; Yang X; An N; Xie Z
    Chemosphere; 2023 Aug; 331():138771. PubMed ID: 37105312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal contents and magnetic susceptibility of soils along an urban-rural gradient in rapidly growing city of Eastern China.
    Lu S; Wang H; Bai S
    Environ Monit Assess; 2009 Aug; 155(1-4):91-101. PubMed ID: 18563601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle Size Distribution of Heavy Metals and Magnetic Susceptibility in an Industrial Site.
    Ayoubi S; Soltani Z; Khademi H
    Bull Environ Contam Toxicol; 2018 May; 100(5):708-714. PubMed ID: 29536119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan--a typical oasis city of Northwestern China.
    Xia D; Wang B; Yu Y; Jia J; Nie Y; Wang X; Xu S
    Sci Total Environ; 2014 Jul; 485-486():83-92. PubMed ID: 24704959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Magnetic Response of Heavy Metal Pollution in Playground Dust of an Industrial Area].
    Yang M; Li HM; Li FY; Wang JH; Diao YW; Qian X; Yang ZP; Wang C
    Huan Jing Ke Xue; 2017 Dec; 38(12):5282-5291. PubMed ID: 29964592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].
    Xue Y; Zhou Q; Li Y; Zhang HB; Hu XF; Luo YM
    Huan Jing Ke Xue; 2016 Apr; 37(4):1306-12. PubMed ID: 27548950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levels and variability of metals in soils of the province of Golestan (Iran).
    Mirzaei R; Esmaili-Sari A; Hemami MR; Rezaei HR; Rodríguez Martín JA
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):617-29. PubMed ID: 24889056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility.
    Barbosa JZ; Poggere GC; Teixeira WWR; Motta ACV; Prior SA; Curi N
    Environ Monit Assess; 2019 Dec; 192(1):46. PubMed ID: 31844991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.
    Ahmadi Doabi S; Karami M; Afyuni M
    Environ Monit Assess; 2016 Apr; 188(4):216. PubMed ID: 26960763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of National Capital Territory (NCT), Delhi.
    Kaur R; Rani R
    Environ Monit Assess; 2006 Dec; 123(1-3):233-47. PubMed ID: 16763736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil.
    Mikkonen HG; van de Graaff R; Clarke BO; Dasika R; Wallis CJ; Reichman SM
    Chemosphere; 2018 Nov; 210():193-203. PubMed ID: 30005340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of metal content in soils near abandoned mines of Bashkir Trans-Urals and in the hair of children living in this territory.
    Semenova IN; Rafikova YS; Khasanova RF; Suyundukov YT
    J Trace Elem Med Biol; 2018 Dec; 50():664-670. PubMed ID: 30269759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China.
    Zhou J; Feng K; Li Y; Zhou Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14957-67. PubMed ID: 27074932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.
    Chang CY; Xu XH; Liu CP; Li SY; Liao XR; Dong J; Li FB
    Environ Sci Process Impacts; 2014 Jul; 16(7):1790-8. PubMed ID: 24855639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.
    Qing X; Yutong Z; Shenggao L
    Ecotoxicol Environ Saf; 2015 Oct; 120():377-85. PubMed ID: 26114257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon.
    do Nascimento CWA; Lima LHV; da Silva FL; Biondi CM; Campos MCC
    Environ Monit Assess; 2018 Sep; 190(10):606. PubMed ID: 30250983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.