BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 30384166)

  • 1. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.
    Wang X; Li C; Li Z; Yu G; Wang Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.
    Jin J; Li Y; Zhang J; Wu S; Cao Y; Liang P; Zhang J; Wong MH; Wang M; Shan S; Christie P
    J Hazard Mater; 2016 Dec; 320():417-426. PubMed ID: 27585274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment.
    Li B; Ding S; Fan H; Ren Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical speciation and risk assessment of heavy metals in biochars derived from sewage sludge and anaerobically digested sludge.
    Zhao J; Qiu C; Fan X; Zheng J; Liu N; Wang C; Wang D; Wang S
    Water Sci Technol; 2021 Sep; 84(5):1079-1089. PubMed ID: 34534107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge.
    Wang X; Chi Q; Liu X; Wang Y
    Chemosphere; 2019 Feb; 216():698-706. PubMed ID: 30391891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the speciation and environmental risk of heavy metals in biochar produced from textile sludge waste by pyrolysis at different temperatures.
    Yadav A; Yadav P; Bojjagani S; Srivastava JK; Raj A
    Chemosphere; 2024 Jul; 360():142454. PubMed ID: 38810801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures.
    Xing J; Li L; Li G; Xu G
    Ecotoxicol Environ Saf; 2019 Sep; 180():457-465. PubMed ID: 31121552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
    Liang X; Ning XA; Chen G; Lin M; Liu J; Wang Y
    Ecotoxicol Environ Saf; 2013 Dec; 98():128-34. PubMed ID: 24094414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.
    Devi P; Saroha AK
    Bioresour Technol; 2014 Jun; 162():308-15. PubMed ID: 24762760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pyrolysis temperature on the properties and environmental safety of heavy metals in chicken manure-derived biochars.
    Bai T; Qu W; Yan Y; Ma K; Xu Y; Zhou X; Chen Y; Xu Y
    J Environ Sci Health B; 2020; 55(11):941-950. PubMed ID: 32715911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency, by-product valorization, and pollution control of co-pyrolysis of textile dyeing sludge and waste solid adsorbents: Their atmosphere, temperature, and blend ratio dependencies.
    Zou H; Huang S; Ren M; Liu J; Evrendilek F; Xie W; Zhang G
    Sci Total Environ; 2022 May; 819():152923. PubMed ID: 34999078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure.
    Zhang P; Zhang X; Li Y; Han L
    Bioresour Technol; 2020 Apr; 302():122850. PubMed ID: 32007849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals.
    Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S
    Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge.
    Yang YQ; Cui MH; Ren YG; Guo JC; Zheng ZY; Liu H
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):489-496. PubMed ID: 32047949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate.
    Liu L; Huang L; Huang R; Lin H; Wang D
    J Hazard Mater; 2021 Feb; 403():123648. PubMed ID: 32835990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge.
    Xiong Q; Wu X; Lv H; Liu S; Hou H; Wu X
    Chemosphere; 2021 Oct; 280():130566. PubMed ID: 33932904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.