These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30384195)

  • 1. Heterologous expression and characterization of a novel serine protease from Daphnia magna: A possible role in susceptibility to toxic cyanobacteria.
    Lange J; Demir F; Huesgen PF; Baumann U; von Elert E; Pichlo C
    Aquat Toxicol; 2018 Dec; 205():140-147. PubMed ID: 30384195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors.
    Schwarzenberger A; Zitt A; Kroth P; Mueller S; Von Elert E
    BMC Physiol; 2010 May; 10():6. PubMed ID: 20441581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive selection of digestive proteases in Daphnia: A mechanism for local adaptation to cyanobacterial protease inhibitors.
    Schwarzenberger A; Hasselmann M; Von Elert E
    Mol Ecol; 2020 Mar; 29(5):912-919. PubMed ID: 32034824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.
    Schwarzenberger A; Sadler T; Von Elert E
    J Exp Biol; 2013 Oct; 216(Pt 19):3649-55. PubMed ID: 23788705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copy number variation of a protease gene of Daphnia: Its role in population tolerance.
    Schwarzenberger A; Keith NR; Jackson CE; Von Elert E
    J Exp Zool A Ecol Integr Physiol; 2017 Feb; 327(2-3):119-126. PubMed ID: 29356420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna.
    Schwarzenberger A; Kuster CJ; Von Elert E
    Mol Ecol; 2012 Oct; 21(19):4898-911. PubMed ID: 22943151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806.
    Agrawal MK; Zitt A; Bagchi D; Weckesser J; Bagchi SN; von Elert E
    Environ Toxicol; 2005 Jun; 20(3):314-22. PubMed ID: 15892063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes.
    von Elert E; Agrawal MK; Gebauer C; Jaensch H; Bauer U; Zitt A
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):287-96. PubMed ID: 15050516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.
    Schwarzenberger A; Fink P
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Apr; 218():23-29. PubMed ID: 29427614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of gut digestive proteases by cyanobacterial diets decreases infection in a
    Sánchez KF; von Elert E; Monell K; Calhoun S; Maisha A; McCreadie P; Duffy MA
    Ecol Evol; 2024 Apr; 14(4):e11340. PubMed ID: 38646007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria.
    Macke E; Callens M; De Meester L; Decaestecker E
    Nat Commun; 2017 Nov; 8(1):1608. PubMed ID: 29151571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible tolerance to dietary protease inhibitors in Daphnia magna.
    von Elert E; Zitt A; Schwarzenberger A
    J Exp Biol; 2012 Jun; 215(Pt 12):2051-9. PubMed ID: 22623193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis.
    Lyu K; Zhang L; Zhu X; Cui G; Wilson AE; Yang Z
    Aquat Toxicol; 2015 Mar; 160():13-21. PubMed ID: 25575127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross talk: Two way allelopathic interactions between toxic Microcystis and Daphnia.
    Bojadzija Savic G; Bormans M; Edwards C; Lawton L; Briand E; Wiegand C
    Harmful Algae; 2020 Apr; 94():101803. PubMed ID: 32414501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of toxic Dolichospermum flos-aquae and anatoxin-a on inducible defenses of Daphnia magna.
    Wang Z; Chen H; Wang Y; Liu Q; Sun Y; Yang Z
    Chemosphere; 2024 Sep; 363():142952. PubMed ID: 39067826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daphnia populations are similar but not identical in tolerance to different protease inhibitors.
    Schwarzenberger A; Ilić M; Von Elert E
    Harmful Algae; 2021 Jun; 106():102062. PubMed ID: 34154785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management.
    Shams S; Cerasino L; Salmaso N; Dietrich DR
    Aquat Toxicol; 2014 Mar; 148():9-15. PubMed ID: 24440453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa.
    Lyu K; Meng Q; Zhu X; Dai D; Zhang L; Huang Y; Yang Z
    Environ Sci Technol; 2016 May; 50(9):4798-807. PubMed ID: 27057760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative Effects of Cyanotoxins and Adaptative Responses of
    Schwarzenberger A
    Toxins (Basel); 2022 Nov; 14(11):. PubMed ID: 36356020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.