These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 30384265)
41. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
42. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. Zhang L; Liu X; Li G; Wang P; Yang Y J Biomed Mater Res A; 2019 Jan; 107(1):104-113. PubMed ID: 30367546 [TBL] [Abstract][Full Text] [Related]
43. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
45. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Madduri S; Papaloïzos M; Gander B Biomaterials; 2010 Mar; 31(8):2323-34. PubMed ID: 20004018 [TBL] [Abstract][Full Text] [Related]
46. A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Xiao L; Wu M; Yan F; Xie Y; Liu Z; Huang H; Yang Z; Yao S; Cai L Int J Biol Macromol; 2021 Mar; 172():19-29. PubMed ID: 33444651 [TBL] [Abstract][Full Text] [Related]
47. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. Saremi J; Khanmohammadi M; Azami M; Ai J; Yousefi-Ahmadipour A; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Sep; 109(9):1588-1599. PubMed ID: 33634587 [TBL] [Abstract][Full Text] [Related]
48. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Subramanian A; Krishnan UM; Sethuraman S Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055 [TBL] [Abstract][Full Text] [Related]
49. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related]
50. Oriented growth of rat Schwann cells on aligned electrospun poly(methyl methacrylate) nanofibers. Xia H; Sun X; Liu D; Zhou Y; Zhong D J Neurol Sci; 2016 Oct; 369():88-95. PubMed ID: 27653871 [TBL] [Abstract][Full Text] [Related]
51. Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration. Nisal A; Sayyad R; Dhavale P; Khude B; Deshpande R; Mapare V; Shukla S; Venugopalan P Sci Rep; 2018 May; 8(1):7235. PubMed ID: 29740071 [TBL] [Abstract][Full Text] [Related]
52. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
53. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
55. Silk scaffolds with tunable mechanical capability for cell differentiation. Bai S; Han H; Huang X; Xu W; Kaplan DL; Zhu H; Lu Q Acta Biomater; 2015 Jul; 20():22-31. PubMed ID: 25858557 [TBL] [Abstract][Full Text] [Related]
56. Random lasing from structurally-modulated silk fibroin nanofibers. Kim S; Yang S; Choi SH; Kim YL; Ryu W; Joo C Sci Rep; 2017 Jul; 7(1):4506. PubMed ID: 28674433 [TBL] [Abstract][Full Text] [Related]
57. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Gu Y; Zhu J; Xue C; Li Z; Ding F; Yang Y; Gu X Biomaterials; 2014 Feb; 35(7):2253-63. PubMed ID: 24360577 [TBL] [Abstract][Full Text] [Related]
58. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Meinel AJ; Kubow KE; Klotzsch E; Garcia-Fuentes M; Smith ML; Vogel V; Merkle HP; Meinel L Biomaterials; 2009 Jun; 30(17):3058-67. PubMed ID: 19233463 [TBL] [Abstract][Full Text] [Related]
59. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Zhu J; Luo J; Zhao X; Gao J; Xiong J J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715 [TBL] [Abstract][Full Text] [Related]
60. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]