These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 30384443)
41. A New Broadband and Strong Absorption Performance FeCO Huang W; Wei S; Wang Y; Wang B; Liang Y; Huang Y; Xu B Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323917 [TBL] [Abstract][Full Text] [Related]
42. Superior Microwave Absorption Properties Derived from the Unique 3D Porous Heterogeneous Structure of a CoS@Fe Liu H; Li L; Wang X; Cui G; Lv X Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33065999 [TBL] [Abstract][Full Text] [Related]
43. Room-Temperature One-Step Synthesis of Silver/Reduced Graphene Oxide Nanocomposites as an Excellent Microwave Absorber. Mondal J; Srivastava SK Langmuir; 2021 Nov; 37(45):13409-13419. PubMed ID: 34736324 [TBL] [Abstract][Full Text] [Related]
44. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. Zhang S; Pei Y; Zhao Z; Guan C; Wu G J Colloid Interface Sci; 2023 Jan; 630(Pt A):453-464. PubMed ID: 36265346 [TBL] [Abstract][Full Text] [Related]
45. Fabrication of 1D Ni nanochains@Zn Wang H; Zhang H; Feng S; Shi Y; Wang H; Zhao K; Nie A; Li T; Ma M; Ma Y J Colloid Interface Sci; 2023 Dec; 652(Pt A):258-271. PubMed ID: 37595443 [TBL] [Abstract][Full Text] [Related]
46. Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti Liang L; Yang R; Han G; Feng Y; Zhao B; Zhang R; Wang Y; Liu C ACS Appl Mater Interfaces; 2020 Jan; 12(2):2644-2654. PubMed ID: 31854182 [TBL] [Abstract][Full Text] [Related]
47. Facile One-Pot Solvothermal Synthesis of the RGO/MWCNT/Fe Zhou Y; Zhao X; Liu F; Chi W; Yao J; Chen G ACS Omega; 2020 Feb; 5(6):2899-2909. PubMed ID: 32095712 [TBL] [Abstract][Full Text] [Related]
48. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance. Sun Y; Xu J; Qiao W; Xu X; Zhang W; Zhang K; Zhang X; Chen X; Zhong W; Du Y ACS Appl Mater Interfaces; 2016 Nov; 8(46):31878-31886. PubMed ID: 27805359 [TBL] [Abstract][Full Text] [Related]
49. High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH Zhang X; Qiao J; Zhao J; Xu D; Wang F; Liu C; Jiang Y; Wu L; Cui P; Lv L; Wang Q; Liu W; Wang Z; Liu J ACS Appl Mater Interfaces; 2019 Oct; 11(39):35959-35968. PubMed ID: 31525942 [TBL] [Abstract][Full Text] [Related]
50. Novel Three-Dimensional Graphene-Like Networks Loaded with Fe Shang T; Lu Q; Zhao J; Chao L; Qin Y; Ren N; Yun Y; Yun G Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34072587 [TBL] [Abstract][Full Text] [Related]
51. Superhydrophobic nanocomposites of erbium oxide and reduced graphene oxide for high-performance microwave absorption. Li L; Lian S; Tang J; Chen S; Guo R; Pan S; Peng C J Colloid Interface Sci; 2022 Jun; 615():69-78. PubMed ID: 35124507 [TBL] [Abstract][Full Text] [Related]
52. Facile synthesis of a rod-like Ni/TiO Hua Y; Zhang X; Chen F; Sun Y; Wang X; Wen Z; Tan Q; Sun C; Bateer B RSC Adv; 2024 Mar; 14(12):8100-8107. PubMed ID: 38464690 [TBL] [Abstract][Full Text] [Related]
53. Hybrid of MoSâ‚‚ and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber. Wang Y; Chen D; Yin X; Xu P; Wu F; He M ACS Appl Mater Interfaces; 2015 Dec; 7(47):26226-34. PubMed ID: 26575796 [TBL] [Abstract][Full Text] [Related]
54. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe Liu Y; Chen Z; Zhang Y; Feng R; Chen X; Xiong C; Dong L ACS Appl Mater Interfaces; 2018 Apr; 10(16):13860-13868. PubMed ID: 29589899 [TBL] [Abstract][Full Text] [Related]
55. Enhanced electromagnetic wave absorption of bacterial cellulose/ reduced graphene oxide aerogel by eco-friendly in-situ construction. Zhang Y; Wang J; Wu Q; Shan T; Bai S; Lan D; Zhang B; Liu Y; Su X J Colloid Interface Sci; 2025 Jan; 678(Pt A):648-655. PubMed ID: 39216392 [TBL] [Abstract][Full Text] [Related]
56. Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption. Zhang K; Liu Y; Liu Y; Yan Y; Ma G; Zhong B; Che R; Huang X Nanomicro Lett; 2024 Jan; 16(1):66. PubMed ID: 38175333 [TBL] [Abstract][Full Text] [Related]
57. Three-Dimensional Bi Lu M; Sun YK; Yang SH; Wang HY; Guan XH; Wang GS Front Chem; 2020; 8():608. PubMed ID: 32850640 [TBL] [Abstract][Full Text] [Related]
58. Optimization Design of the Multidimensional Heterostructure toward Lightweight, Broadband, Highly Efficient, and Flame-Retarding Electromagnetic Wave-Absorbing Composites. Li YM; Li YR; Fang HP; Deng Y; Wang DY ACS Appl Mater Interfaces; 2024 Sep; 16(38):51333-51345. PubMed ID: 39269425 [TBL] [Abstract][Full Text] [Related]
59. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579 [TBL] [Abstract][Full Text] [Related]