These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 30384627)
1. Low-dimensional paradigms for high-dimensional hetero-chaos. Saiki Y; Sanjuán MAF; Yorke JA Chaos; 2018 Oct; 28(10):103110. PubMed ID: 30384627 [TBL] [Abstract][Full Text] [Related]
2. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
3. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
6. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
7. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
8. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
9. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
10. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor. Mangiarotti S; Letellier C Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
12. Method for measuring unstable dimension variability from time series. McCullen NJ; Moresco P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913 [TBL] [Abstract][Full Text] [Related]
13. Manifestation of riddling in the presence of a small parameter mismatch between coupled systems. Yanchuk S; Kapitaniak T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):017202. PubMed ID: 12935289 [TBL] [Abstract][Full Text] [Related]
14. Attractor-repeller collision and the heterodimensional dynamics. Chigarev V; Kazakov A; Pikovsky A Chaos; 2023 Jun; 33(6):. PubMed ID: 37276553 [TBL] [Abstract][Full Text] [Related]
15. Using unstable periodic orbits to overcome distortion in chaotic signals. Carroll TL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5469-73. PubMed ID: 11970420 [TBL] [Abstract][Full Text] [Related]
16. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Perc M; Marhl M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149 [TBL] [Abstract][Full Text] [Related]
17. Topological characterization of deterministic chaos: enforcing orientation preservation. Lefranc M; Morant PE; Nizette M Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):559-67. PubMed ID: 17698472 [TBL] [Abstract][Full Text] [Related]
18. Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. Arecchi FT; Boccaletti S Chaos; 1997 Dec; 7(4):621-634. PubMed ID: 12779688 [TBL] [Abstract][Full Text] [Related]
19. Local and global control of high-period unstable orbits in reversible maps. Bolotin YL; Gonchar VY; Krokhin AA; Hernández-Tejeda PH; Tur A; Yanovsky VV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026218. PubMed ID: 11497688 [TBL] [Abstract][Full Text] [Related]
20. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]