These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30384636)
1. Configurational stability for the Kuramoto-Sakaguchi model. Bronski JC; Carty T; DeVille L Chaos; 2018 Oct; 28(10):103109. PubMed ID: 30384636 [TBL] [Abstract][Full Text] [Related]
2. Optimal cost tuning of frustration: Achieving desired states in the Kuramoto-Sakaguchi model. Rosell-Tarragó G; Díaz-Guilera A Phys Rev E; 2021 Jan; 103(1-1):012216. PubMed ID: 33601612 [TBL] [Abstract][Full Text] [Related]
3. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry. Manoranjani M; Gupta S; Chandrasekar VK Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257 [TBL] [Abstract][Full Text] [Related]
4. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
5. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model. Brede M; Kalloniatis AC Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288 [TBL] [Abstract][Full Text] [Related]
6. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
7. From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation. Kawamura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010901. PubMed ID: 24580159 [TBL] [Abstract][Full Text] [Related]
8. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
9. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators. English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391 [TBL] [Abstract][Full Text] [Related]
10. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
11. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model. English LQ; Zeng Z; Mertens D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767 [TBL] [Abstract][Full Text] [Related]
12. Dynamics in the Sakaguchi-Kuramoto model with two subpopulations [corrected]. Ju P; Dai Q; Cheng H; Yang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012903. PubMed ID: 25122356 [TBL] [Abstract][Full Text] [Related]
13. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions. Sharma A; Rajwani P; Jalan S Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012 [TBL] [Abstract][Full Text] [Related]
14. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
15. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. Kundu P; Khanra P; Hens C; Pal P Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755 [TBL] [Abstract][Full Text] [Related]
16. Coupled Möbius maps as a tool to model Kuramoto phase synchronization. Gong CC; Toenjes R; Pikovsky A Phys Rev E; 2020 Aug; 102(2-1):022206. PubMed ID: 32942495 [TBL] [Abstract][Full Text] [Related]
17. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
18. Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution. Guo S; Xie Y; Dai Q; Li H; Yang J PLoS One; 2020; 15(12):e0243196. PubMed ID: 33296390 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
20. Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. Bronski JC; DeVille L; Park MJ Chaos; 2012 Sep; 22(3):033133. PubMed ID: 23020472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]