These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30384762)

  • 1. Giant negative mobility of inertial particles caused by the periodic potential in steady laminar flows.
    Ai BQ; Zhu WJ; He YF; Zhong WR
    J Chem Phys; 2018 Oct; 149(16):164903. PubMed ID: 30384762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous rectification and absolute negative mobility of inertial Brownian particles induced by Gaussian potentials in steady laminar flows.
    Wu JC; An M; Ma WG
    Soft Matter; 2019 Sep; 15(36):7187-7194. PubMed ID: 31464332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute negative mobility of active polymer chains in steady laminar flows.
    Wu JC; Lin FJ; Ai BQ
    Soft Matter; 2022 Feb; 18(6):1194-1200. PubMed ID: 35037681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Response of Inertial Tracers in Steady Laminar Flows: Differential and Absolute Negative Mobility.
    Sarracino A; Cecconi F; Puglisi A; Vulpiani A
    Phys Rev Lett; 2016 Oct; 117(17):174501. PubMed ID: 27824440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous force-velocity relation of driven inertial tracers in steady laminar flows.
    Cecconi F; Puglisi A; Sarracino A; Vulpiani A
    Eur Phys J E Soft Matter; 2017 Sep; 40(9):81. PubMed ID: 28942558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute negative mobility induced by thermal equilibrium fluctuations.
    Machura L; Kostur M; Talkner P; Łuczka J; Hänggi P
    Phys Rev Lett; 2007 Jan; 98(4):040601. PubMed ID: 17358750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous mobility of a driven active particle in a steady laminar flow.
    Cecconi F; Puglisi A; Sarracino A; Vulpiani A
    J Phys Condens Matter; 2018 Jul; 30(26):264002. PubMed ID: 29762125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong-chaos-caused negative mobility in a periodic substrate potential.
    Luo Y; Zeng C; Ai BQ
    Phys Rev E; 2020 Oct; 102(4-1):042114. PubMed ID: 33212680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute negative mobility induced by potential phase modulation.
    Dandogbessi BS; Kenfack A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062903. PubMed ID: 26764770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of uphill anomalous transport in inhomogeneous media.
    Mulhern C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022906. PubMed ID: 24032900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical nature of negative mobility in the weak dissipation regime.
    Wiśniewski M; Spiechowicz J
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roughness in the periodic potential induces absolute negative mobility in a driven Brownian ratchet.
    G R A; Barik D
    Phys Rev E; 2022 Oct; 106(4-1):044129. PubMed ID: 36397596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive wakes.
    Jallas D; Marquet O; Fabre D
    Phys Rev E; 2017 Jun; 95(6-1):063111. PubMed ID: 28709180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and diffusion in the embedding map.
    Nirmal Thyagu N; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066203. PubMed ID: 19658579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows.
    Sapsis T; Haller G
    Chaos; 2010 Mar; 20(1):017515. PubMed ID: 20370305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant negative mobility of Janus particles in a corrugated channel.
    Ghosh PK; Hänggi P; Marchesoni F; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062115. PubMed ID: 25019733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current reversals of coupled driven and damped particles evolving in a tilted potential landscape.
    Mulhern C; Hennig D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036202. PubMed ID: 22060470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.