BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3038543)

  • 1. The mechanism of the conservation of energy of biological oxidations.
    Slater EC
    Eur J Biochem; 1987 Aug; 166(3):489-504. PubMed ID: 3038543
    [No Abstract]   [Full Text] [Related]  

  • 2. The energetics of bacterial active transport.
    Simoni RD; Postma PW
    Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462
    [No Abstract]   [Full Text] [Related]  

  • 3. Biological energy production in the apparent absence of electron transport and substrate level phosphorylation.
    Zehnder AJ; Brock TD
    FEBS Lett; 1979 Nov; 107(1):1-3. PubMed ID: 159192
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of energy transformations.
    Racker E
    Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035
    [No Abstract]   [Full Text] [Related]  

  • 5. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms.
    Mitchell P
    FEBS Lett; 1975 Feb; 50(2):95-7. PubMed ID: 234404
    [No Abstract]   [Full Text] [Related]  

  • 6. Reconstitution of mitochondrial energy conservation at sites 0 and 1.
    Ragan CI
    Biochem Soc Trans; 1976; 4(4):552-5. PubMed ID: 1001722
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation.
    Ernster L
    Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042
    [No Abstract]   [Full Text] [Related]  

  • 8. The separation of electrons and protons during electron transfer: the distinction between membrane potentials and transmembrane gradients.
    Williams RJ
    Ann N Y Acad Sci; 1974 Feb; 227():98-107. PubMed ID: 4363931
    [No Abstract]   [Full Text] [Related]  

  • 9. The mitochondrion and biologic oxidations.
    Nahrwold ML; Cohen PJ
    Clin Anesth; 1975; 11(1):1-23. PubMed ID: 164299
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative and photosynthetic phosphorylation mechanisms.
    Wang JH
    Science; 1970 Jan; 167(3914):25-30. PubMed ID: 5409474
    [No Abstract]   [Full Text] [Related]  

  • 11. H+-Adenosine triphosphatase and membrane energy coupling.
    Kozlov IA; Skulachev VP
    Biochim Biophys Acta; 1977 Jun; 463(1):29-89. PubMed ID: 19061
    [No Abstract]   [Full Text] [Related]  

  • 12. The unitary hypothesis on the coupling of energy transduction and its relevance to the modeling of mechanisms.
    Bennun A
    Ann N Y Acad Sci; 1974 Feb; 227():116-45. PubMed ID: 4275116
    [No Abstract]   [Full Text] [Related]  

  • 13. [The integration and evolution of bioenergetic processes].
    Ivanov ID
    Izv Akad Nauk SSSR Biol; 1970; 1():5-13. PubMed ID: 4321493
    [No Abstract]   [Full Text] [Related]  

  • 14. The electromechanochemical model for energy coupling in mitochondria.
    Green DE
    Biochim Biophys Acta; 1974 Apr; 346(1):27-78. PubMed ID: 4151654
    [No Abstract]   [Full Text] [Related]  

  • 15. Acriflavine: anisotropic inhibitor of energy transduction in oxidative phosphorylation of rat liver mitochondria.
    Higuti T; Arakaki N; Yokota M; Hattori A; Tani I
    FEBS Lett; 1978 Mar; 87(1):87-91. PubMed ID: 631335
    [No Abstract]   [Full Text] [Related]  

  • 16. Coupling mechanisms in capture, transmission, and use of energy.
    Annu Rev Biochem; 1977; 46():957-66. PubMed ID: 143237
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy coupling in mitochondria.
    Komai H; Hunter DR; Green DE
    Ann N Y Acad Sci; 1974 Feb; 227():175-8. PubMed ID: 4524334
    [No Abstract]   [Full Text] [Related]  

  • 18. [Transformation of energy in biological systems].
    Engel'gardt VA
    Vestn Akad Nauk SSSR; 1969 May; 39(5):25-39. PubMed ID: 5386579
    [No Abstract]   [Full Text] [Related]  

  • 19. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 20. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell.
    Skulachev VP
    FEBS Lett; 1977 Feb; 74(1):1-9. PubMed ID: 14031
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.