These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30385762)

  • 1. Non-equilibrium anisotropic colloidal single crystal growth with DNA.
    Seo SE; Girard M; Olvera de la Cruz M; Mirkin CA
    Nat Commun; 2018 Nov; 9(1):4558. PubMed ID: 30385762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic colloidal crystal particles from microfluidics.
    Cheng Y; Zhu C; Xie Z; Gu H; Tian T; Zhao Y; Gu Z
    J Colloid Interface Sci; 2014 May; 421():64-70. PubMed ID: 24594033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems.
    Nguyen VD; Hu Z; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011607. PubMed ID: 21867183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming "Atomic Substitution" in Alloy Colloidal Crystals Using DNA.
    Landy KM; Gibson KJ; Urbach ZJ; Park SS; Roth EW; Weigand S; Mirkin CA
    Nano Lett; 2022 Jan; 22(1):280-285. PubMed ID: 34978818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites.
    Jenkins IC; Casey MT; McGinley JT; Crocker JC; Sinno T
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4803-8. PubMed ID: 24639545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D isotropic-nematic transition in colloidal suspensions of ellipsoids.
    Tan X; Chen Y; Wang H; Zhang Z; Ling XS
    Soft Matter; 2021 Jun; 17(24):6001-6005. PubMed ID: 34059864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrays of Colloidal Single Crystals Engineered with DNA in Lithographically Defined Microwells.
    Wong AM; Je K; Zheng CY; Jibril L; Miao Z; Glotzer SC; Mirkin CA
    Nano Lett; 2023 Jan; 23(1):116-123. PubMed ID: 36541890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets.
    Avrahami EM; Houben L; Aram L; Gal A
    Science; 2022 Apr; 376(6590):312-316. PubMed ID: 35420932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions in active colloidal crystal microrheology.
    Weeber R; Harting J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):057302. PubMed ID: 23214913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules.
    Li F; Yoo WC; Beernink MB; Stein A
    J Am Chem Soc; 2009 Dec; 131(51):18548-55. PubMed ID: 19954228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization.
    O'Brien MN; Girard M; Lin HX; Millan JA; Olvera de la Cruz M; Lee B; Mirkin CA
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10485-90. PubMed ID: 27601636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient.
    Sun X; Li Y; Zhang TH; Ma YQ; Zhang Z
    Langmuir; 2013 Jun; 29(24):7216-20. PubMed ID: 23311289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convenient and Efficient Fabrication of Colloidal Crystals Based on Solidification-Induced Colloidal Assembly.
    Shao T; Sun L; Yang C; Ye X; Chen S; Luo X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30970558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA.
    Laramy CR; Lopez-Rios H; O'Brien MN; Girard M; Stawicki RJ; Lee B; de la Cruz MO; Mirkin CA
    ACS Nano; 2019 Feb; 13(2):1412-1420. PubMed ID: 30585476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically tunable diffraction of light from 2D nematic colloidal crystals.
    Humar M; Skarabot M; Ravnik M; Zumer S; Poberaj I; Babic D; Musevic I
    Eur Phys J E Soft Matter; 2008 Sep; 27(1):73-9. PubMed ID: 19230228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA.
    Distler ME; Landy KM; Gibson KJ; Lee B; Weigand S; Mirkin CA
    J Am Chem Soc; 2023 Jan; 145(2):841-850. PubMed ID: 36607135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Phase Synthesis of Branched Metallic Nanoparticles for Plasmonic Applications.
    Ujihara M
    J Oleo Sci; 2018; 67(6):689-696. PubMed ID: 29863089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid.
    Hwang H; Weitz DA; Spaepen F
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25225-25229. PubMed ID: 32973094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.