BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30385798)

  • 1. Target site specificity and in vivo complexity of the mammalian arginylome.
    Wang J; Pejaver VR; Dann GP; Wolf MY; Kellis M; Huang Y; Garcia BA; Radivojac P; Kashina A
    Sci Rep; 2018 Nov; 8(1):16177. PubMed ID: 30385798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R-catcher, a potent molecular tool to unveil the arginylome.
    Seo T; Kim J; Shin HC; Kim JG; Ju S; Nawale L; Han G; Lee HS; Bang G; Kim JY; Bang JK; Lee KH; Soung NK; Hwang J; Lee C; Kim SJ; Kim BY; Cha-Molstad H
    Cell Mol Life Sci; 2021 Apr; 78(7):3725-3741. PubMed ID: 33687501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.
    Wang J; Han X; Wong CC; Cheng H; Aslanian A; Xu T; Leavis P; Roder H; Hedstrom L; Yates JR; Kashina A
    Chem Biol; 2014 Mar; 21(3):331-7. PubMed ID: 24529990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates.
    Rai R; Kashina A
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10123-8. PubMed ID: 16002466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tRNA
    Avcilar-Kucukgoze I; Gamper H; Polte C; Ignatova Z; Kraetzner R; Shtutman M; Hou YM; Dong DW; Kashina A
    Cell Chem Biol; 2020 Jul; 27(7):839-849.e4. PubMed ID: 32553119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assaying for Arginyltransferase Activity and Specificity by Peptide Arrays.
    Wang J; Kashina AS
    Methods Mol Biol; 2023; 2620():123-127. PubMed ID: 37010758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.
    Brower CS; Rosen CE; Jones RH; Wadas BC; Piatkov KI; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4936-45. PubMed ID: 25369936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational protein arginylation in the normal nervous system and in neurodegeneration.
    Galiano MR; Goitea VE; Hallak ME
    J Neurochem; 2016 Aug; 138(4):506-17. PubMed ID: 27318192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranslational arginylation as a global biological regulator.
    Saha S; Kashina A
    Dev Biol; 2011 Oct; 358(1):1-8. PubMed ID: 21784066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.
    Batsios P; Ishikawa-Ankerhold HC; Roth H; Schleicher M; Wong CCL; Müller-Taubenberger A
    Mol Biol Cell; 2019 Feb; 30(4):453-466. PubMed ID: 30586322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The preparation of recombinant arginyltransferase 1 (ATE1) for biophysical characterization.
    Cartwright M; Van V; Smith AT
    Methods Enzymol; 2023; 679():235-254. PubMed ID: 36682863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays.
    Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():67-71. PubMed ID: 26285882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Arginylation Assay in Microplate Format.
    Saha S; Wang J; Kashina AS
    Methods Mol Biol; 2015; 1337():79-82. PubMed ID: 26285884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Analysis of Post-Translational Side-Chain Arginylation Using Pan-Arginylation Antibodies.
    MacTaggart B; Shimogawa M; Lougee M; Tang HY; Petersson EJ; Kashina A
    Mol Cell Proteomics; 2023 Nov; 22(11):100664. PubMed ID: 37832787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
    Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.
    Kumar A; Birnbaum MD; Patel DM; Morgan WM; Singh J; Barrientos A; Zhang F
    Cell Death Dis; 2016 Sep; 7(9):e2378. PubMed ID: 27685622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginylation Regulates Cytoskeleton Organization and Cell Division and Affects Mitochondria in Fission Yeast.
    Chen L; Kashina A
    Mol Cell Biol; 2022 Nov; 42(11):e0026122. PubMed ID: 36226970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle.
    Kashina A
    Anat Rec (Hoboken); 2014 Sep; 297(9):1630-6. PubMed ID: 25125176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of ATE1 Enzyme from Native Mammalian Tissues.
    Kashina AS
    Methods Mol Biol; 2023; 2620():35-39. PubMed ID: 37010746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.