These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30385798)
21. Preparation of ATE1 Enzyme from Native Mammalian Tissues. Kashina AS Methods Mol Biol; 2023; 2620():35-39. PubMed ID: 37010746 [TBL] [Abstract][Full Text] [Related]
22. Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Wang J; Han X; Saha S; Xu T; Rai R; Zhang F; Wolf YI; Wolfson A; Yates JR; Kashina A Chem Biol; 2011 Jan; 18(1):121-30. PubMed ID: 21276945 [TBL] [Abstract][Full Text] [Related]
23. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202 [TBL] [Abstract][Full Text] [Related]
24. Assaying ATE1 Activity In Vitro. Wang J; Kashina AS Methods Mol Biol; 2023; 2620():113-117. PubMed ID: 37010756 [TBL] [Abstract][Full Text] [Related]
25. Assaying Arginylation Activity in Cell Lysates Using a Fluorescent Reporter. Kumar A; Zhang F Methods Mol Biol; 2023; 2620():71-80. PubMed ID: 37010750 [TBL] [Abstract][Full Text] [Related]
26. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development. Wang J; Pavlyk I; Vedula P; Sterling S; Leu NA; Dong DW; Kashina A Dev Biol; 2017 Oct; 430(1):41-51. PubMed ID: 28844905 [TBL] [Abstract][Full Text] [Related]
27. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. Drazic A; Timmerman E; Kajan U; Marie M; Varland S; Impens F; Gevaert K; Arnesen T J Mol Biol; 2022 Jan; 434(2):167397. PubMed ID: 34896361 [TBL] [Abstract][Full Text] [Related]
28. Global analysis of posttranslational protein arginylation. Wong CC; Xu T; Rai R; Bailey AO; Yates JR; Wolf YI; Zebroski H; Kashina A PLoS Biol; 2007 Oct; 5(10):e258. PubMed ID: 17896865 [TBL] [Abstract][Full Text] [Related]
29. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Wang J; Han X; Leu NA; Sterling S; Kurosaka S; Fina M; Lee VM; Dong DW; Yates JR; Kashina A Sci Rep; 2017 Sep; 7(1):11323. PubMed ID: 28900170 [TBL] [Abstract][Full Text] [Related]
30. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. Lee MJ; Kim DE; Zakrzewska A; Yoo YD; Kim SH; Kim ST; Seo JW; Lee YS; Dorn GW; Oh U; Kim BY; Kwon YT J Biol Chem; 2012 Jul; 287(28):24043-52. PubMed ID: 22577142 [TBL] [Abstract][Full Text] [Related]
31. Bacterial Expression and Purification of Recombinant Arginyltransferase (ATE1) and Arg-tRNA Synthetase (RRS) for Arginylation Assays. Wang J; Kashina AS Methods Mol Biol; 2023; 2620():87-91. PubMed ID: 37010752 [TBL] [Abstract][Full Text] [Related]
32. Applying Arginylation for Bottom-Up Proteomics. Ebhardt HA Methods Mol Biol; 2015; 1337():129-38. PubMed ID: 26285889 [TBL] [Abstract][Full Text] [Related]
33. Arginylation-dependent neural crest cell migration is essential for mouse development. Kurosaka S; Leu NA; Zhang F; Bunte R; Saha S; Wang J; Guo C; He W; Kashina A PLoS Genet; 2010 Mar; 6(3):e1000878. PubMed ID: 20300656 [TBL] [Abstract][Full Text] [Related]
34. The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells. Moorthy BT; Jiang C; Patel DM; Ban Y; O'Shea CR; Kumar A; Yuan T; Birnbaum MD; Gomes AV; Chen X; Fontanesi F; Lampidis TJ; Barrientos A; Zhang F Dev Cell; 2022 Mar; 57(5):654-669.e9. PubMed ID: 35247316 [TBL] [Abstract][Full Text] [Related]
35. Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis. Saha S; Wang J; Buckley B; Wang Q; Lilly B; Chernov M; Kashina A Biochem Pharmacol; 2012 Apr; 83(7):866-73. PubMed ID: 22280815 [TBL] [Abstract][Full Text] [Related]
36. Functional Interplay between Arginyl-tRNA Synthetases and Arginyltransferase. Avcilar-Kucukgoze I; MacTaggart B; Kashina A Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077558 [TBL] [Abstract][Full Text] [Related]
37. N-Terminal Arginylation Pull-down Analysis Using the R-Catcher Tool. Seo T; Han G; Cha-Molstad H Methods Mol Biol; 2023; 2620():219-228. PubMed ID: 37010765 [TBL] [Abstract][Full Text] [Related]
38. Biochemical analysis of protein arginylation. Wang J; Yates JR; Kashina A Methods Enzymol; 2019; 626():89-113. PubMed ID: 31606094 [TBL] [Abstract][Full Text] [Related]
39. The Structure of Saccharomyces cerevisiae Arginyltransferase 1 (ATE1). Van V; Ejimogu NE; Bui TS; Smith AT J Mol Biol; 2022 Nov; 434(21):167816. PubMed ID: 36087779 [TBL] [Abstract][Full Text] [Related]
40. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Hu RG; Sheng J; Qi X; Xu Z; Takahashi TT; Varshavsky A Nature; 2005 Oct; 437(7061):981-6. PubMed ID: 16222293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]