These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30385876)

  • 1. Photodiodes embedded within electronic textiles.
    Satharasinghe A; Hughes-Riley T; Dias T
    Sci Rep; 2018 Nov; 8(1):16205. PubMed ID: 30385876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wash Testing of Electronic Yarn.
    Hardy DA; Rahemtulla Z; Satharasinghe A; Shahidi A; Oliveira C; Anastasopoulos I; Nashed MN; Kgatuke M; Komolafe A; Torah R; Tudor J; Hughes-Riley T; Beeby S; Dias T
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Textile Thermograph.
    Lugoda P; Hughes-Riley T; Morris R; Dias T
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study of Thermistor Performance within a Textile Structure.
    Hughes-Riley T; Lugoda P; Dias T; Trabi CL; Morris RH
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Stainless Steel Yarn with Embedded Surface Mounted Light Emitting Diodes.
    Simegnaw AA; Malengier B; Tadesse MG; Van Langenhove L
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on the Integration of Microelectronics for E-Textile.
    Simegnaw AA; Malengier B; Rotich G; Tadesse MG; Van Langenhove L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.
    Ryan JD; Mengistie DA; Gabrielsson R; Lund A; Müller C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9045-9050. PubMed ID: 28245105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Design and Development of Woven Textile Solar Panels.
    Abeywickrama N; Kgatuke M; Marasinghe K; Nashed MN; Oliveira C; Shahidi AM; Dias T; Hughes-Riley T
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabric opto-electronics enabling healthcare applications; a case study.
    van Pieterson L; van Abeelen FA; van Os K; Hornix E; Zhou G; Oversluizen G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8377-9. PubMed ID: 22256290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns.
    Zhao Z; Yan C; Liu Z; Fu X; Peng LM; Hu Y; Zheng Z
    Adv Mater; 2016 Dec; 28(46):10267-10274. PubMed ID: 27690188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing an Acoustic Sensing Yarn for Health Surveillance in a Military Setting.
    Hughes-Riley T; Dias T
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction.
    Cao R; Pu X; Du X; Yang W; Wang J; Guo H; Zhao S; Yuan Z; Zhang C; Li C; Wang ZL
    ACS Nano; 2018 Jun; 12(6):5190-5196. PubMed ID: 29771494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to Make Reliable, Washable, and Wearable Textronic Devices.
    Tao X; Koncar V; Huang TH; Shen CL; Ko YC; Jou GT
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28338607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable and Washable MnO
    Noh JH; Oh M; Kang S; Lee HS; Hong YJ; Park C; Lee R; Choi C
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mathematical model for evaluating fatigue resistance of SG tubular fabric: relationship between textile parameters and fatigue performance.
    Zhao H; Wang L; Li Y; Liu X; King MW
    J Biomater Appl; 2010 Mar; 24(7):579-90. PubMed ID: 19074468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.
    Wang Z; Huang Y; Sun J; Huang Y; Hu H; Jiang R; Gai W; Li G; Zhi C
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24837-43. PubMed ID: 27558025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of yarn structure on wicking and its impact on bloodstain pattern analysis (BPA) on woven cotton fabrics.
    Li X; Li J; Michielsen S
    Forensic Sci Int; 2017 Jul; 276():41-50. PubMed ID: 28499150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.
    Heo JS; Eom J; Kim YH; Park SK
    Small; 2018 Jan; 14(3):. PubMed ID: 29205836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards woven logic from organic electronic fibres.
    Hamedi M; Forchheimer R; Inganäs O
    Nat Mater; 2007 May; 6(5):357-62. PubMed ID: 17406663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.