These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30386200)

  • 1. Convolutional Networks Outperform Linear Decoders in Predicting EMG From Spinal Cord Signals.
    Guo Y; Gok S; Sahin M
    Front Neurosci; 2018; 12():689. PubMed ID: 30386200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Movement Intent Decoders Trained With Dataset Aggregation for Prosthetic Limb Control.
    Dantas H; Warren DJ; Wendelken SM; Davis TS; Clark GA; Mathews VJ
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3192-3203. PubMed ID: 30835207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of forelimb muscle EMGs from the corticospinal signals in rats.
    Gok S; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2780-2783. PubMed ID: 28268895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Forelimb EMGs and Movement Phases from Corticospinal Signals in the Rat During the Reach-to-Pull Task.
    Gok S; Sahin M
    Int J Neural Syst; 2019 Sep; 29(7):1950009. PubMed ID: 31111753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time.
    Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852
    [No Abstract]   [Full Text] [Related]  

  • 6. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time finger force prediction via parallel convolutional neural networks: a preliminary study.
    Xu F; Zheng Y; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3126-3129. PubMed ID: 33018667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.
    Tryon J; Trejos AL
    Front Neurorobot; 2021; 15():692183. PubMed ID: 34887739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization.
    Farahat A; Reichert C; Sweeney-Reed CM; Hinrichs H
    J Neural Eng; 2019 Oct; 16(6):066010. PubMed ID: 31416059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling.
    Wang SH; Phillips P; Sui Y; Liu B; Yang M; Cheng H
    J Med Syst; 2018 Mar; 42(5):85. PubMed ID: 29577169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network.
    Zhang C; Qiao K; Wang L; Tong L; Zeng Y; Yan B
    Front Hum Neurosci; 2018; 12():242. PubMed ID: 29988371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonpooling Convolutional Neural Network Forecasting for Seasonal Time Series With Trends.
    Liu S; Ji H; Wang MC
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):2879-2888. PubMed ID: 31494562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal signals recorded with MEAs can predict the volitional forearm forces in rats.
    Guo Y; Mesut S; Foulds RA; Adamovich SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1984-7. PubMed ID: 24110105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks.
    Schulte RV; Zondag M; Buurke JH; Prinsen EC
    Front Robot AI; 2022; 9():869476. PubMed ID: 35546902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generic neural network model to estimate populational neural activity for robust neural decoding.
    Roy R; Xu F; Kamper DG; Hu X
    Comput Biol Med; 2022 May; 144():105359. PubMed ID: 35247763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor content of multi-unit activity recorded in the paramedian lobule of the cerebellum using carbon fiber microelectrode arrays.
    Cetinkaya E; Lang EJ; Sahin M
    Front Neurosci; 2024; 18():1232653. PubMed ID: 38486968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.