These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30386227)

  • 1. Robot End Effector Tracking Using Predictive Multisensory Integration.
    Wijesinghe LP; Triesch J; Shi BE
    Front Neurorobot; 2018; 12():66. PubMed ID: 30386227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oculo-manual tracking of visual targets: control learning, coordination control and coordination model.
    Gauthier GM; Vercher JL; Mussa Ivaldi F; Marchetti E
    Exp Brain Res; 1988; 73(1):127-37. PubMed ID: 3208852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks.
    Bütepage J; Ghadirzadeh A; Öztimur Karadaǧ Ö; Björkman M; Kragic D
    Front Robot AI; 2020; 7():47. PubMed ID: 33501215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Correlates of Multisensory Integration for Feedback Stabilization of the Wrist.
    Suminski AJ; Doudlah RC; Scheidt RA
    Front Integr Neurosci; 2022; 16():815750. PubMed ID: 35600223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
    Debats NB; Ridderikhoff A; de Boer BJ; Peper CL
    Behav Brain Res; 2013 Aug; 250():334-42. PubMed ID: 23680163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation.
    Zeng T; Tang F; Ji D; Si B
    Neural Netw; 2020 Jun; 126():21-35. PubMed ID: 32179391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hebbian learning for online prediction, neural recall and classical conditioning of anthropomimetic robot arm motions.
    Feldotto B; Walter F; Röhrbein F; Knoll A
    Bioinspir Biomim; 2018 Oct; 13(6):066009. PubMed ID: 30221625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage-Wise Learning of Reaching Using Little Prior Knowledge.
    de La Bourdonnaye F; Teulière C; Triesch J; Chateau T
    Front Robot AI; 2018; 5():110. PubMed ID: 33500989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot.
    Tidoni E; Gergondet P; Kheddar A; Aglioti SM
    Front Neurorobot; 2014; 8():20. PubMed ID: 24987350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self Beyond the Body: Action-Driven and Task-Relevant Purely Distal Cues Modulate Performance and Body Ownership.
    Grechuta K; Ulysse L; Rubio Ballester B; Verschure PFMJ
    Front Hum Neurosci; 2019; 13():91. PubMed ID: 30949038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Smooth Pursuit Eye Movements.
    Kowler E; Rubinstein JF; Santos EM; Wang J
    Annu Rev Vis Sci; 2019 Sep; 5():223-246. PubMed ID: 31283450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor coordination in a "baby" robot: learning about objects through grasping.
    Natale L; Orabona F; Metta G; Sandini G
    Prog Brain Res; 2007; 164():403-24. PubMed ID: 17920444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction.
    Khoramshahi M; Shukla A; Raffard S; Bardy BG; Billard A
    PLoS One; 2016; 11(6):e0156874. PubMed ID: 27281341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous Development of Active Binocular and Motion Vision Through Active Efficient Coding.
    Lelais A; Mahn J; Narayan V; Zhang C; Shi BE; Triesch J
    Front Neurorobot; 2019; 13():49. PubMed ID: 31379548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divisively Normalized Integration of Multisensory Error Information Develops Motor Memories Specific to Vision and Proprioception.
    Hayashi T; Kato Y; Nozaki D
    J Neurosci; 2020 Feb; 40(7):1560-1570. PubMed ID: 31924610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of articulated snake robot under dynamic active constraints.
    Kwok KW; Vitiello V; Yang GZ
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):229-36. PubMed ID: 20879404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.