These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30386227)

  • 21. Discontinuous Track Recognition System Based on PolyLaneNet for Darwin-op2 Robot.
    Wu XB; Lv SC; Wang XH; Zhang SZ; Liu Q; Wang YQ; Chen WB
    Comput Intell Neurosci; 2022; 2022():5431886. PubMed ID: 35154303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination.
    Vercher JL; Gauthier GM; Guédon O; Blouin J; Cole J; Lamarre Y
    J Neurophysiol; 1996 Aug; 76(2):1133-44. PubMed ID: 8871226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes.
    Liu H; Luo J; Wu P; Xie S; Li H
    Appl Bionics Biomech; 2015; 2015():714572. PubMed ID: 27019592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Online learning and control of attraction basins for the development of sensorimotor control strategies.
    de Rengervé A; Andry P; Gaussier P
    Biol Cybern; 2015 Apr; 109(2):255-74. PubMed ID: 25576394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation.
    Yu X; Li B; He W; Feng Y; Cheng L; Silvestre C
    IEEE Trans Cybern; 2022 Dec; 52(12):13237-13249. PubMed ID: 34570713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion.
    Vercher JL; Gauthier GM
    Exp Brain Res; 1992; 90(3):599-609. PubMed ID: 1426116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A "eye-in-body" integrated surgery robot system for stereotactic surgery.
    Li L; Wu J; Ding H; Wang G
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2123-2135. PubMed ID: 31317475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A brain-inspired intention prediction model and its applications to humanoid robot.
    Zhao Y; Zeng Y
    Front Neurosci; 2022; 16():1009237. PubMed ID: 36340762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion.
    Suzuki K; Garfinkel SN; Critchley HD; Seth AK
    Neuropsychologia; 2013 Nov; 51(13):2909-17. PubMed ID: 23993906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensorimotor control of gait: a novel approach for the study of the interplay of visual and proprioceptive feedback.
    Frost R; Skidmore J; Santello M; Artemiadis P
    Front Hum Neurosci; 2015; 9():14. PubMed ID: 25709574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics.
    Danion F; Mathew J; Flanagan JR
    eNeuro; 2017; 4(3):. PubMed ID: 28680964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-Inspired Coding of Robot Body Schema Through Visuo-Motor Integration of Touched Events.
    Pugach G; Pitti A; Tolochko O; Gaussier P
    Front Neurorobot; 2019; 13():5. PubMed ID: 30899217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of continuum robot arms under reinforcement learning and derived improvements.
    Morimoto R; Ikeda M; Niiyama R; Kuniyoshi Y
    Front Robot AI; 2022; 9():895388. PubMed ID: 36119726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Joint Learning of Binocularly Driven Saccades and Vergence by Active Efficient Coding.
    Zhu Q; Triesch J; Shi BE
    Front Neurorobot; 2017; 11():58. PubMed ID: 29163121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human-like object tracking and gaze estimation with PKD android.
    Wijayasinghe IB; Miller HL; Das SK; Bugnariu NL; Popa DO
    Proc SPIE Int Soc Opt Eng; 2016 May; 9859():. PubMed ID: 29416193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biologically inspired neural model for visual and proprioceptive integration including sensory training.
    Saidi M; Towhidkhah F; Gharibzadeh S; Lari AA
    J Integr Neurosci; 2013 Dec; 12(4):491-511. PubMed ID: 24372068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.