These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30386338)

  • 1. Ubiquitination in Scleroderma Fibrosis and Its Treatment.
    Long Y; Chen W; Du Q; Zuo X; Zhu H
    Front Immunol; 2018; 9():2383. PubMed ID: 30386338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncanonical transforming growth factor beta signaling in scleroderma fibrosis.
    Trojanowska M
    Curr Opin Rheumatol; 2009 Nov; 21(6):623-9. PubMed ID: 19713852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis.
    Tsai CY; Hsieh SC; Wu TH; Li KJ; Shen CY; Liao HT; Wu CH; Kuo YM; Lu CS; Yu CL
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32349208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy.
    Wei J; Bhattacharyya S; Tourtellotte WG; Varga J
    Autoimmun Rev; 2011 Mar; 10(5):267-75. PubMed ID: 20863909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the TGFbeta, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma.
    Leask A
    Cell Signal; 2008 Aug; 20(8):1409-14. PubMed ID: 18296024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs: their involvement in fibrosis pathogenesis and use as diagnostic biomarkers in scleroderma.
    Zhu H; Luo H; Zuo X
    Exp Mol Med; 2013 Sep; 45(9):e41. PubMed ID: 24052166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal models of scleroderma: lessons from transgenic and knockout mice.
    Derrett-Smith EC; Denton CP; Sonnylal S
    Curr Opin Rheumatol; 2009 Nov; 21(6):630-5. PubMed ID: 19730378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis.
    Tomcik M; Zerr P; Pitkowski J; Palumbo-Zerr K; Avouac J; Distler O; Becvar R; Senolt L; Schett G; Distler JH
    Ann Rheum Dis; 2014 Jun; 73(6):1215-22. PubMed ID: 23661493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of metabolism in the pathogenesis of systemic sclerosis.
    Zhu H; Chen W; Liu D; Luo H
    Metabolism; 2019 Apr; 93():44-51. PubMed ID: 30586574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-HT
    Chaturvedi S; Misra DP; Prasad N; Rastogi K; Singh H; Rai MK; Agarwal V
    Int J Rheum Dis; 2018 Dec; 21(12):2128-2138. PubMed ID: 30207074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of endoglin in fibrosis and scleroderma.
    Maring JA; Trojanowska M; ten Dijke P
    Int Rev Cell Mol Biol; 2012; 297():295-308. PubMed ID: 22608563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type I interferon dysregulation in Systemic Sclerosis.
    Skaug B; Assassi S
    Cytokine; 2020 Aug; 132():154635. PubMed ID: 30685202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc.
    Liang R; Šumová B; Cordazzo C; Mallano T; Zhang Y; Wohlfahrt T; Dees C; Ramming A; Krasowska D; Michalska-Jakubus M; Distler O; Schett G; Šenolt L; Distler JH
    Ann Rheum Dis; 2017 Apr; 76(4):756-764. PubMed ID: 27793816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis.
    Verrecchia F; Mauviel A; Farge D
    Autoimmun Rev; 2006 Oct; 5(8):563-9. PubMed ID: 17027893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis.
    Del Galdo F; Lisanti MP; Jimenez SA
    Curr Opin Rheumatol; 2008 Nov; 20(6):713-9. PubMed ID: 18949888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.
    McCoy SS; Reed TJ; Berthier CC; Tsou PS; Liu J; Gudjonsson JE; Khanna D; Kahlenberg JM
    Rheumatology (Oxford); 2017 Nov; 56(11):1970-1981. PubMed ID: 28968684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transforming growth factor-beta and its receptors in scleroderma].
    QIAN H; ZHENG M
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2009 Jul; 38(4):415-21. PubMed ID: 19693982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Histone Deacetylase Sirtuin 1 Is Reduced in Systemic Sclerosis and Abrogates Fibrotic Responses by Targeting Transforming Growth Factor β Signaling.
    Wei J; Ghosh AK; Chu H; Fang F; Hinchcliff ME; Wang J; Marangoni RG; Varga J
    Arthritis Rheumatol; 2015 May; 67(5):1323-34. PubMed ID: 25707573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts.
    Leask A; Abraham DJ; Finlay DR; Holmes A; Pennington D; Shi-Wen X; Chen Y; Venstrom K; Dou X; Ponticos M; Black C; Bernabeu C; Jackman JK; Findell PR; Connolly MK
    Arthritis Rheum; 2002 Jul; 46(7):1857-65. PubMed ID: 12124870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis.
    Beyer C; Dees C; Distler JH
    Arch Dermatol Res; 2013 Jan; 305(1):1-8. PubMed ID: 23208311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.