BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30386428)

  • 1. Constitutive hyperproduction of sorbicillinoids in
    Li C; Lin F; Sun W; Yuan S; Zhou Z; Wu FG; Chen Z
    Biotechnol Biofuels; 2018; 11():291. PubMed ID: 30386428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorbicillinoids hyperproduction without affecting the cellulosic enzyme production in Trichoderma reesei JNTR5.
    Li C; Gu R; Lin F; Xiao H
    Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):85. PubMed ID: 35996177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulase hyper-production by
    Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z
    Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Derntl C; Guzmán-Chávez F; Mello-de-Sousa TM; Busse HJ; Driessen AJM; Mach RL; Mach-Aigner AR
    Front Microbiol; 2017; 8():2037. PubMed ID: 29104566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei.
    Cao Y; Yang R; Zheng F; Meng X; Zhang W; Liu W
    mBio; 2021 Feb; 13(1):e0345621. PubMed ID: 35130719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening.
    Liu P; Lin A; Zhang G; Zhang J; Chen Y; Shen T; Zhao J; Wei D; Wang W
    Microb Cell Fact; 2019 May; 18(1):81. PubMed ID: 31077201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei.
    Wang L; Liu J; Li X; Lyu X; Liu Z; Zhao H; Jiao X; Zhang W; Xie J; Liu W
    Microb Biotechnol; 2022 Oct; 15(10):2533-2546. PubMed ID: 35921310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Reprogramming of Gene Transcription in
    Zhang F; Li JX; Champreda V; Liu CG; Bai FW; Zhao XQ
    Front Bioeng Biotechnol; 2020; 8():649. PubMed ID: 32719779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J; Zhang G; Wang W; Wang W; Wei D
    Microb Cell Fact; 2018 May; 17(1):75. PubMed ID: 29773074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the res2 transcription factor gene deletion on protein secretion and stress response in the hyperproducer strain Trichoderma reesei Rut-C30.
    Alharake J; Bidard F; Aouam T; Sénamaud-Beaufort C; Margeot A; Heiss-Blanquet S
    BMC Microbiol; 2023 Nov; 23(1):374. PubMed ID: 38036984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.
    Zhang F; Bai F; Zhao X
    Biotechnol J; 2016 Oct; 11(10):1282-1290. PubMed ID: 27578229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational engineering of the
    Fonseca LM; Parreiras LS; Murakami MT
    Biotechnol Biofuels; 2020; 13():93. PubMed ID: 32461765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30.
    Limón MC; Pakula T; Saloheimo M; Penttilä M
    Microb Cell Fact; 2011 May; 10():40. PubMed ID: 21609467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.
    Zhang X; Li Y; Zhao X; Bai F
    Bioresour Technol; 2017 Jan; 223():317-322. PubMed ID: 27818160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Carbon, Nitrogen, Ambient pH and Light on Mycelial Growth, Sporulation, Sorbicillinoid Biosynthesis and Related Gene Expression in
    Zhang X; Hou X; Xu D; Xue M; Zhang J; Wang J; Yang Y; Lai D; Zhou L
    J Fungi (Basel); 2023 Mar; 9(4):. PubMed ID: 37108845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-dose rapamycin exerts a temporary impact on T. reesei RUT-C30 through gene trFKBP12.
    Pang AP; Wang H; Zhang F; Hu X; Wu FG; Zhou Z; Wang W; Lu Z; Lin F
    Biotechnol Biofuels; 2021 Mar; 14(1):77. PubMed ID: 33771193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1.
    Zhang F; Zhao X; Bai F
    Bioresour Technol; 2018 Jan; 247():676-683. PubMed ID: 30060399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability.
    Fang H; Zhao R; Li C; Zhao C
    Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.