These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30386429)

  • 1. De novo transcriptome assembly of the bamboo snout beetle
    Luo C; Li Y; Liao H; Yang Y
    Biotechnol Biofuels; 2018; 11():292. PubMed ID: 30386429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of bamboo lignocellulose by bamboo snout beetle
    Luo C; Li Y; Chen Y; Fu C; Nong X; Yang Y
    Biotechnol Biofuels; 2019; 12():75. PubMed ID: 30976325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle
    Luo C; Li Y; Chen Y; Fu C; Long W; Xiao X; Liao H; Yang Y
    Biotechnol Biofuels; 2019; 12():70. PubMed ID: 30976320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome sequencing of gut symbiotic
    Li Y; Lei L; Zheng L; Xiao X; Tang H; Luo C
    Biotechnol Biofuels; 2020; 13():34. PubMed ID: 32140179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developmental transcriptome of the bamboo snout beetle Cyrtotrachelus buqueti and insights into candidate pheromone-binding proteins.
    Yang H; Su T; Yang W; Yang C; Lu L; Chen Z
    PLoS One; 2017; 12(6):e0179807. PubMed ID: 28662071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree].
    Yang YJ; Wang SF; Gong JW; Liu C; Mu C; Qin H
    Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):1980-5. PubMed ID: 19947221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti.
    Fu C; Yang D; Long WC; Xiao X; Wang H; Jiang N; Yang Y
    BMC Genomics; 2024 May; 25(1):453. PubMed ID: 38720243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus
    Park YJ; Jeong YU; Kong WS
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30104475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates.
    Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM
    Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of Cyrtotrachelus buqueti in two cities in China.
    Luo C; Liu A; Long W; Liao H; Yang Y
    Gene; 2018 Mar; 647():1-12. PubMed ID: 29274908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in
    Corrêa CL; Midorikawa GEO; Filho EXF; Noronha EF; Alves GSC; Togawa RC; Silva-Junior OB; Costa MMDC; Grynberg P; Miller RNG
    Front Bioeng Biotechnol; 2020; 8():564527. PubMed ID: 33123513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5-18 revealed active lignocellulosic degrading genes.
    Hu S; Han P; Wang BT; Jin L; Ruan HH; Jin FJ
    Arch Microbiol; 2024 Jun; 206(7):327. PubMed ID: 38922442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into transcriptome of Cyathus bulleri for lignocellulase expression on wheat bran.
    Vats A; Mishra S
    Arch Microbiol; 2021 Aug; 203(6):3727-3736. PubMed ID: 33877388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from
    Yang H; Liu L; Wang F; Yang W; Huang Q; Wang N; Hu H
    Insects; 2024 Feb; 15(2):. PubMed ID: 38392530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle.
    Scully ED; Hoover K; Carlson JE; Tien M; Geib SM
    BMC Genomics; 2013 Dec; 14(1):850. PubMed ID: 24304644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.