These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30386769)

  • 1. Switching Between Bicyclic and Linear Peptides - The Sulfhydryl-Specific Linker TPSMB Enables Reversible Cyclization of Peptides.
    Ernst C; Heidrich J; Sessler C; Sindlinger J; Schwarzer D; Koch P; Boeckler FM
    Front Chem; 2018; 6():484. PubMed ID: 30386769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Symmetric Tetravalent Sulfhydryl-Specific Linker NATBA Facilitates a Combinatorial "Tool Kit" Strategy for Phage Display-Based Selection of Functionalized Bicyclic Peptides.
    Ernst C; Sindlinger J; Schwarzer D; Koch P; Boeckler FM
    ACS Omega; 2018 Oct; 3(10):12361-12368. PubMed ID: 30411004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides.
    Chen S; Morales-Sanfrutos J; Angelini A; Cutting B; Heinis C
    Chembiochem; 2012 May; 13(7):1032-8. PubMed ID: 22492661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage selection of bicyclic peptides based on two disulfide bridges.
    Chen S; Heinis C
    Methods Mol Biol; 2015; 1248():119-37. PubMed ID: 25616330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization.
    Chen FJ; Pinnette N; Yang F; Gao J
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306813. PubMed ID: 37285100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-responsive bicyclic peptides.
    Jafari MR; Yu H; Wickware JM; Lin YS; Derda R
    Org Biomol Chem; 2018 Oct; 16(41):7588-7594. PubMed ID: 30067270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns.
    Lin P; Yao H; Zha J; Zhao Y; Wu C
    Chembiochem; 2019 Jun; 20(12):1514-1518. PubMed ID: 30770638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical macrocyclization of peptides fused to antibody Fc fragments.
    Angelini A; Diderich P; Morales-Sanfrutos J; Thurnheer S; Hacker D; Menin L; Heinis C
    Bioconjug Chem; 2012 Sep; 23(9):1856-63. PubMed ID: 22812498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput synthesis of peptide α-thioesters: a safety catch linker approach enabling parallel hydrogen fluoride cleavage.
    Brust A; Schroeder CI; Alewood PF
    ChemMedChem; 2014 May; 9(5):1038-46. PubMed ID: 24591329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthetic Strategies for Macrocyclic Peptides.
    Wang W; Khojasteh SC; Su D
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2491():387-415. PubMed ID: 35482201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage selection of bicyclic peptides.
    Rentero Rebollo I; Heinis C
    Methods; 2013 Mar; 60(1):46-54. PubMed ID: 23313750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels.
    Vedaraman S; Bernhagen D; Haraszti T; Licht C; Castro Nava A; Omidinia Anarkoli A; Timmerman P; De Laporte L
    Biomater Sci; 2021 Jun; 9(12):4329-4342. PubMed ID: 33724266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display.
    Oppewal TR; Jansen ID; Hekelaar J; Mayer C
    J Am Chem Soc; 2022 Mar; 144(8):3644-3652. PubMed ID: 35171585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization.
    Qian Z; Rhodes CA; McCroskey LC; Wen J; Appiah-Kubi G; Wang DJ; Guttridge DC; Pei D
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1525-1529. PubMed ID: 28035784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries.
    Chen S; Rentero Rebollo I; Buth SA; Morales-Sanfrutos J; Touati J; Leiman PG; Heinis C
    J Am Chem Soc; 2013 May; 135(17):6562-9. PubMed ID: 23560397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation.
    Yin Y; Fei Q; Liu W; Li Z; Suga H; Wu C
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4880-4885. PubMed ID: 30762292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Low-Energy Surfaces Using Bicyclic Peptides Discovered by Phage Display.
    Wang L; Li H; Wang X; Yang X; Tian C; Sun D; Liu L; Li J
    J Am Chem Soc; 2023 Aug; 145(32):17613-17620. PubMed ID: 37531461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.