These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30386779)

  • 1. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells.
    Ho KKY; Wang YL; Wu J; Liu AP
    Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of sequential cyclic compression on cancer cells in a flexible microdevice.
    Onal S; Alkaisi MM; Nock V
    PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies.
    Lee LM; Lee JW; Chase D; Gebrezgiabhier D; Liu AP
    Biomicrofluidics; 2016 Sep; 10(5):054105. PubMed ID: 27703591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically activated artificial cell by using microfluidics.
    Ho KK; Lee LM; Liu AP
    Sci Rep; 2016 Sep; 6():32912. PubMed ID: 27610921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS device for applying shear and tension to an epithelium combined with fluorescent live cell imaging.
    Garcia MA; Sadeghipour E; Engel L; Nelson WJ; Pruitt BL
    J Micromech Microeng; 2020; 30(12):. PubMed ID: 34413578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A magnetically controlled microfluidic device for concentration dependent
    Yadav VK; Ganguly P; Mishra P; Das S; Mallick D
    Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic mechano-chemostat for tissues and organisms reveals that confined growth is accompanied with increased macromolecular crowding.
    Ben Meriem Z; Mateo T; Faccini J; Denais C; Dusfour-Castan R; Guynet C; Merle T; Suzanne M; Di-Luoffo M; Guillermet-Guibert J; Alric B; Landiech S; Malaquin L; Mesnilgrente F; Laborde A; Mazenq L; Courson R; Delarue M
    Lab Chip; 2023 Oct; 23(20):4445-4455. PubMed ID: 37740366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves.
    Chen C; Xu D; Bai S; Yu Z; Zhu Y; Xing X; Chen H
    Lab Chip; 2020 Apr; 20(7):1227-1237. PubMed ID: 32100799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.
    Lee D; Erickson A; You T; Dudley AT; Ryu S
    Lab Chip; 2018 Jul; 18(14):2077-2086. PubMed ID: 29897088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression.
    Lee D; Erickson A; Dudley AT; Ryu S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications.
    Shao G; Lu D; Fu Z; Du D; Ozanich RM; Wang W; Lin Y
    Analyst; 2016 Jan; 141(1):206-15. PubMed ID: 26566573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Removable Precision Device for In-Vivo Mechanical Compression of Rat Tail Intervertebral Discs.
    Stinnett-Donnelly JM; MacLean JJ; Iatridis JC
    J Med Device; 2007 Mar; 1(1):56-61. PubMed ID: 38529339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An image-guided microfluidic system for single-cell lineage tracking.
    Aslan Kamil M; Fourneaux C; Yilmaz A; Stavros S; Parmentier R; Paldi A; Gonin-Giraud S; deMello AJ; Gandrillon O
    PLoS One; 2023; 18(8):e0288655. PubMed ID: 37527253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permanent Deformation and Stiffness Degradation of Open Hole Glass/PA6 UD Thermoplastic Composite in Tension and Compression.
    Sevenois RD; Yang X; Verboven E; Kersemans M; Van Paepegem W
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.