BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30386779)

  • 1. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells.
    Ho KKY; Wang YL; Wu J; Liu AP
    Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of sequential cyclic compression on cancer cells in a flexible microdevice.
    Onal S; Alkaisi MM; Nock V
    PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies.
    Lee LM; Lee JW; Chase D; Gebrezgiabhier D; Liu AP
    Biomicrofluidics; 2016 Sep; 10(5):054105. PubMed ID: 27703591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS device for applying shear and tension to an epithelium combined with fluorescent live cell imaging.
    Garcia MA; Sadeghipour E; Engel L; Nelson WJ; Pruitt BL
    J Micromech Microeng; 2020; 30(12):. PubMed ID: 34413578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetically controlled microfluidic device for concentration dependent
    Yadav VK; Ganguly P; Mishra P; Das S; Mallick D
    Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves.
    Chen C; Xu D; Bai S; Yu Z; Zhu Y; Xing X; Chen H
    Lab Chip; 2020 Apr; 20(7):1227-1237. PubMed ID: 32100799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic mechano-chemostat for tissues and organisms reveals that confined growth is accompanied with increased macromolecular crowding.
    Ben Meriem Z; Mateo T; Faccini J; Denais C; Dusfour-Castan R; Guynet C; Merle T; Suzanne M; Di-Luoffo M; Guillermet-Guibert J; Alric B; Landiech S; Malaquin L; Mesnilgrente F; Laborde A; Mazenq L; Courson R; Delarue M
    Lab Chip; 2023 Oct; 23(20):4445-4455. PubMed ID: 37740366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.
    Lee D; Erickson A; You T; Dudley AT; Ryu S
    Lab Chip; 2018 Jul; 18(14):2077-2086. PubMed ID: 29897088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression.
    Lee D; Erickson A; Dudley AT; Ryu S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications.
    Shao G; Lu D; Fu Z; Du D; Ozanich RM; Wang W; Lin Y
    Analyst; 2016 Jan; 141(1):206-15. PubMed ID: 26566573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An image-guided microfluidic system for single-cell lineage tracking.
    Aslan Kamil M; Fourneaux C; Yilmaz A; Stavros S; Parmentier R; Paldi A; Gonin-Giraud S; deMello AJ; Gandrillon O
    PLoS One; 2023; 18(8):e0288655. PubMed ID: 37527253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permanent Deformation and Stiffness Degradation of Open Hole Glass/PA6 UD Thermoplastic Composite in Tension and Compression.
    Sevenois RD; Yang X; Verboven E; Kersemans M; Van Paepegem W
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices.
    Shakeri A; Imani SM; Chen E; Yousefi H; Shabbir R; Didar TF
    Lab Chip; 2019 Sep; 19(18):3104-3115. PubMed ID: 31429455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the mechanical properties of unloading damaged sandstone under cyclic loading and unloading.
    Zhang H; Wang L; Li J; Deng H; Xu X
    Sci Rep; 2023 May; 13(1):7370. PubMed ID: 37147325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.