These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30386779)

  • 21. Deformation of a single mouse oocyte in a constricted microfluidic channel.
    Luo Z; Guven S; Gozen I; Chen P; Tasoglu S; Anchan RM; Bai B; Demirci U
    Microfluid Nanofluidics; 2015 Oct; 19(4):883-890. PubMed ID: 26696793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading.
    Peptan AI; Lopez A; Kopher RA; Mao JJ
    Bone; 2008 Feb; 42(2):432-8. PubMed ID: 18032124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microcontact printing of proteins inside microstructures.
    Foley J; Schmid H; Stutz R; Delamarche E
    Langmuir; 2005 Nov; 21(24):11296-303. PubMed ID: 16285803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-density microfluidic arrays for cell cytotoxicity analysis.
    Wang Z; Kim MC; Marquez M; Thorsen T
    Lab Chip; 2007 Jun; 7(6):740-5. PubMed ID: 17538716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a micro cell compression stimulator for evaluating real-time cellular responses.
    Nakashima Y; Yang Y; Minami K
    Rev Sci Instrum; 2012 May; 83(5):055004. PubMed ID: 22667645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the damage characteristics of gas-bearing shale under different unloading stress paths.
    Guo Y; Wang L; Chang X
    PLoS One; 2019; 14(11):e0224654. PubMed ID: 31693692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial growth and form under mechanical compression.
    Si F; Li B; Margolin W; Sun SX
    Sci Rep; 2015 Jun; 5():11367. PubMed ID: 26086542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Mechanically Tunable Microfluidic Cell-Trapping Device.
    Zhu J; Shang J; Olsen T; Liu K; Brenner D; Lin Q
    Sens Actuators A Phys; 2014 Aug; 215():197-203. PubMed ID: 25821347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform.
    Jimenez-Valdes RJ; Rodriguez-Moncayo R; Cedillo-Alcantar DF; Garcia-Cordero JL
    Anal Chem; 2017 May; 89(10):5210-5220. PubMed ID: 28406613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells.
    Xu T; Yue W; Li CW; Yao X; Yang M
    Lab Chip; 2013 Mar; 13(6):1060-9. PubMed ID: 23403699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.
    Lietaert K; Cutolo A; Boey D; Van Hooreweder B
    Sci Rep; 2018 Mar; 8(1):4957. PubMed ID: 29563593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A compression transmission device for the evaluation of bonding strength of biocompatible microfluidic and biochip materials and systems.
    Kratz SRA; Bachmann B; Spitz S; Höll G; Eilenberger C; Goeritz H; Ertl P; Rothbauer M
    Sci Rep; 2020 Jan; 10(1):1400. PubMed ID: 31996733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells.
    Masuda T; Takahashi I; Anada T; Arai F; Fukuda T; Takano-Yamamoto T; Suzuki O
    J Biotechnol; 2008 Jan; 133(2):231-8. PubMed ID: 17904677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loading-unloading of an elastic-plastic adhesive spherical microcontact.
    Kadin Y; Kligerman Y; Etsion I
    J Colloid Interface Sci; 2008 May; 321(1):242-50. PubMed ID: 18275967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.