These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30386779)

  • 41. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Loading-unloading of an elastic-plastic adhesive spherical microcontact.
    Kadin Y; Kligerman Y; Etsion I
    J Colloid Interface Sci; 2008 May; 321(1):242-50. PubMed ID: 18275967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A compression transmission device for the evaluation of bonding strength of biocompatible microfluidic and biochip materials and systems.
    Kratz SRA; Bachmann B; Spitz S; Höll G; Eilenberger C; Goeritz H; Ertl P; Rothbauer M
    Sci Rep; 2020 Jan; 10(1):1400. PubMed ID: 31996733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells.
    Masuda T; Takahashi I; Anada T; Arai F; Fukuda T; Takano-Yamamoto T; Suzuki O
    J Biotechnol; 2008 Jan; 133(2):231-8. PubMed ID: 17904677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A computational model for single cell Lamin-A structural organization after microfluidic compression.
    Maremonti MI; Causa F
    Biotechnol Bioeng; 2024 Nov; 121(11):3551-3562. PubMed ID: 39020522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compression-Shear Specimen Stress-State Response and Distribution Characteristics with Wide Stress Triaxiality.
    Xu Y; Zhao C; Wang C; Qiu Y; Zhao X; Li S; Zhao N
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anisotropic, three-dimensional deformation of single attached cells under compression.
    Peeters EA; Bouten CV; Oomens CW; Bader DL; Snoeckx LH; Baaijens FP
    Ann Biomed Eng; 2004 Oct; 32(10):1443-52. PubMed ID: 15535061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfluidic device enabling deterministic single cell trapping and release.
    Chai H; Feng Y; Liang F; Wang W
    Lab Chip; 2021 Jun; 21(13):2486-2494. PubMed ID: 34047733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D-printable cell crowding device enables imaging of live cells in compression.
    Dow LP; Khankhel AH; Abram J; Valentine MT
    Biotechniques; 2020 May; 68(5):275-278. PubMed ID: 32096656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microfluidic array enabling generation of identical biochemical stimulating signals to trapped biological cells for single-cell dynamics.
    Yu M; Li YJ; Yang YN; Xue CD; Xin GY; Liu B; Qin KR
    Talanta; 2024 Jan; 267():125172. PubMed ID: 37699267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microfluidic device enabling high-efficiency single cell trapping.
    Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH
    Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.
    Sathish S; Ricoult SG; Toda-Peters K; Shen AQ
    Analyst; 2017 May; 142(10):1772-1781. PubMed ID: 28430279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps.
    Cai Y; Yu E; Jin J; Liu Y; Chen H
    Lab Chip; 2023 Jul; 23(15):3467-3478. PubMed ID: 37427692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading.
    Fang F; Sawhney AS; Lake SP
    J Biomech; 2014 Sep; 47(12):2869-77. PubMed ID: 25113805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chondrocyte deformation during the unloading phase of cyclic compression loading.
    Otoo BS; Kuan Moo E; Komeili A; Hart DA; Herzog W
    J Biomech; 2024 Jun; 171():112179. PubMed ID: 38852482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.