These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30386893)

  • 1. Potential Risk by Disposal of Bottom Ash from Thermal Power Plants and Minimization by Addition of NaHCO
    Singh G; Kumar S; Mohapatra SK
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):773-778. PubMed ID: 30386893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the leaching behavior of elements from coal combustion residues for better management.
    Kumar A; Samadder SR
    Environ Monit Assess; 2015 Jun; 187(6):370. PubMed ID: 26002341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Nilsson M; Andreas L; Lagerkvist A
    Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.
    Lin WY; Heng KS; Sun X; Wang JY
    Waste Manag; 2015 Sep; 43():264-72. PubMed ID: 26077229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.
    Di Gianfilippo M; Costa G; Verginelli I; Gavasci R; Lombardi F
    Waste Manag; 2016 Oct; 56():216-28. PubMed ID: 27478024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leachability of elements from sub-bituminous coal fly ash from India.
    Praharaj T; Powell MA; Hart BR; Tripathy S
    Environ Int; 2002 Mar; 27(8):609-15. PubMed ID: 11934110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.
    Kong Q; Yao J; Qiu Z; Shen D
    Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching kinetics of bottom ash waste as a source of calcium ions.
    Koech L; Everson R; Neomagus H; Rutto H
    J Air Waste Manag Assoc; 2015 Feb; 65(2):126-32. PubMed ID: 25947048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.
    Freire M; Lopes H; Tarelho LA
    Waste Manag; 2015 Dec; 46():304-15. PubMed ID: 26344913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.
    Rong L; Maneerung T; Ng JC; Neoh KG; Bay BH; Tong YW; Dai Y; Wang CH
    Waste Manag; 2015 Feb; 36():241-55. PubMed ID: 25532673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.
    Oehmig WN; Roessler JG; Zhang J; Townsend TG
    J Hazard Mater; 2015; 283():500-6. PubMed ID: 25464288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of coal and its combustion ash: recognition of environmental impact and remediation.
    Saha D; Roychowdhury T
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37310-37320. PubMed ID: 36571687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron activation analysis of thermal power plant ash and surrounding area soils.
    Al-Masri MS; Haddad Kh; Alsomel N; Sarhil A
    Environ Monit Assess; 2015 Aug; 187(8):536. PubMed ID: 26220782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.
    Zhang Y; Nakano J; Liu L; Wang X; Zhang Z
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15469-78. PubMed ID: 26006077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical study on distribution of multiple dissolved elements and a water quality assessment around a simulated stackable fly ash.
    Wang J
    Ecotoxicol Environ Saf; 2018 Sep; 159():46-55. PubMed ID: 29730408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.