These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30387194)
1. Identification of Facet-Governing Reactivity in Hematite for Oxygen Evolution. Wu H; Yang T; Du Y; Shen L; Ho GW Adv Mater; 2018 Dec; 30(52):e1804341. PubMed ID: 30387194 [TBL] [Abstract][Full Text] [Related]
2. Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Tao HB; Fang L; Chen J; Yang HB; Gao J; Miao J; Chen S; Liu B J Am Chem Soc; 2016 Aug; 138(31):9978-85. PubMed ID: 27441842 [TBL] [Abstract][Full Text] [Related]
3. Facet Dependence of the Oxygen Evolution Reaction on Co Davis EM; Bergmann A; Kuhlenbeck H; Roldan Cuenya B J Am Chem Soc; 2024 May; 146(20):13770-13782. PubMed ID: 38717849 [TBL] [Abstract][Full Text] [Related]
4. Unusual Catalytic Properties of High-Energetic-Facet Polar Metal Oxides. Li Y; Tsang SCE Acc Chem Res; 2021 Jan; 54(2):366-378. PubMed ID: 33382242 [TBL] [Abstract][Full Text] [Related]
5. U(VI) adsorption on hematite nanocrystals: Insights into the reactivity of {001} and {012} facets. Mei H; Liu Y; Tan X; Feng J; Ai Y; Fang M J Hazard Mater; 2020 Nov; 399():123028. PubMed ID: 32521314 [TBL] [Abstract][Full Text] [Related]
6. Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials. Govind Rajan A; Martirez JMP; Carter EA J Am Chem Soc; 2020 Feb; 142(7):3600-3612. PubMed ID: 31961150 [TBL] [Abstract][Full Text] [Related]
7. Interplay between Facets and Defects during the Dissociative and Molecular Adsorption of Water on Metal Oxide Surfaces. Lahiri N; Song D; Zhang X; Huang X; Stoerzinger KA; Carvalho OQ; Adiga PP; Blum M; Rosso KM J Am Chem Soc; 2023 Feb; 145(5):2930-2940. PubMed ID: 36696237 [TBL] [Abstract][Full Text] [Related]
8. Facet-dependent surface charge and Pb Liang Y; Xu J; Koopal LK; Wang M; Xiong J; Hou J; Tan W Environ Res; 2021 May; 196():110383. PubMed ID: 33137313 [TBL] [Abstract][Full Text] [Related]
9. Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction. Hao Z; Wei P; Kang H; Yang Y; Li J; Chen X; Guo D; Liu L Nanotechnology; 2020 Oct; 31(43):435707. PubMed ID: 32640442 [TBL] [Abstract][Full Text] [Related]
10. An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Huang X; Wang J; Tao HB; Tian H; Xu H Chem Sci; 2019 Mar; 10(11):3340-3345. PubMed ID: 30996921 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Hydrolysis of Li T; Zhong W; Jing C; Li X; Zhang T; Jiang C; Chen W Environ Sci Technol; 2020 Jul; 54(14):8658-8667. PubMed ID: 32545958 [TBL] [Abstract][Full Text] [Related]
12. Active Electron Density Modulation of Co He D; Song X; Li W; Tang C; Liu J; Ke Z; Jiang C; Xiao X Angew Chem Int Ed Engl; 2020 Apr; 59(17):6929-6935. PubMed ID: 32100367 [TBL] [Abstract][Full Text] [Related]
13. Reducing the Barrier Energy of Self-Reconstruction for Anchored Cobalt Nanoparticles as Highly Active Oxygen Evolution Electrocatalyst. Kim M; Lee B; Ju H; Lee SW; Kim J Adv Mater; 2019 Aug; 31(32):e1901977. PubMed ID: 31192497 [TBL] [Abstract][Full Text] [Related]
14. Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide. Zhu Y; Tahini HA; Hu Z; Chen ZG; Zhou W; Komarek AC; Lin Q; Lin HJ; Chen CT; Zhong Y; Fernández-Díaz MT; Smith SC; Wang H; Liu M; Shao Z Adv Mater; 2020 Jan; 32(1):e1905025. PubMed ID: 31713899 [TBL] [Abstract][Full Text] [Related]
15. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity. Patra AK; Kundu SK; Bhaumik A; Kim D Nanoscale; 2016 Jan; 8(1):365-77. PubMed ID: 26616162 [TBL] [Abstract][Full Text] [Related]
16. General Structure-Reactivity Relationship for Oxygen on Transition-Metal Oxides. Fung V; Tao FF; Jiang DE J Phys Chem Lett; 2017 May; 8(10):2206-2211. PubMed ID: 28468494 [TBL] [Abstract][Full Text] [Related]
17. Untangling product selectivity on clean low index rutile TiO Malik AS; Fredin LA Phys Chem Chem Phys; 2023 Jan; 25(3):2203-2211. PubMed ID: 36594450 [TBL] [Abstract][Full Text] [Related]
18. Fulvic Acid-Mediated Interfacial Reactions on Exposed Hematite Facets during Dissimilatory Iron Reduction. Hu S; Wu Y; Li F; Shi Z; Ma C; Liu T Langmuir; 2021 May; 37(20):6139-6150. PubMed ID: 33974438 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. Zhou S; Liu N; Wang Z; Zhao J ACS Appl Mater Interfaces; 2017 Jul; 9(27):22578-22587. PubMed ID: 28621128 [TBL] [Abstract][Full Text] [Related]
20. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions. Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]