These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 30387221)
1. Synthesis of Functional Polymer Particles from Morita-Baylis-Hillman Polymerization. Ramakers G; D'Incal C; Gagliardi M; Molin DGM; Junkers T Macromol Rapid Commun; 2018 Dec; 39(23):e1800678. PubMed ID: 30387221 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and Biological Evaluation of a Degradable Trehalose Glycopolymer Prepared by RAFT Polymerization. Lau UY; Pelegri-O'Day EM; Maynard HD Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29251372 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Yin Q; Yin L; Wang H; Cheng J Acc Chem Res; 2015 Jul; 48(7):1777-87. PubMed ID: 26065588 [TBL] [Abstract][Full Text] [Related]
4. Studies on the Biocompatibility of Poly(diethyl vinyl-phosphonate) with a New Fluorescent Marker. Schwarzenböck C; Vagin SI; Heinz WR; Nelson PJ; Rieger B Macromol Rapid Commun; 2018 Aug; 39(15):e1800259. PubMed ID: 29892983 [TBL] [Abstract][Full Text] [Related]
5. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity. Rudolph A; Teske M; Illner S; Kiefel V; Sternberg K; Grabow N; Wree A; Hovakimyan M PLoS One; 2015; 10(12):e0142075. PubMed ID: 26641662 [TBL] [Abstract][Full Text] [Related]
6. Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. Kumar S; Alnasif N; Fleige E; Kurniasih I; Kral V; Haase A; Luch A; Weindl G; Haag R; Schäfer-Korting M; Hedtrich S Eur J Pharm Biopharm; 2014 Nov; 88(3):625-34. PubMed ID: 25445303 [TBL] [Abstract][Full Text] [Related]
7. Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid). Jahno VD; Ribeiro GB; dos Santos LA; Ligabue R; Einloft S; Ferreira MR; Bombonato-Prado KF J Biomed Mater Res A; 2007 Oct; 83(1):209-15. PubMed ID: 17437300 [TBL] [Abstract][Full Text] [Related]
8. In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly(N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition. Chou FY; Lai JY; Shih CM; Tsai MC; Lue SJ Colloids Surf B Biointerfaces; 2013 Apr; 104():66-74. PubMed ID: 23298590 [TBL] [Abstract][Full Text] [Related]
9. Ex Vivo and In Vitro Studies on the Cytotoxicity and Immunomodulative Properties of Poly(2-isopropenyl-2-oxazoline) as a New Type of Biomedical Polymer. Kroneková Z; Mikulec M; Petrenčíková N; Paulovičová E; Paulovičová L; Jančinová V; Nosál' R; Reddy PS; Shimoga GD; Chorvát D; Kronek J Macromol Biosci; 2016 Aug; 16(8):1200-11. PubMed ID: 27150385 [TBL] [Abstract][Full Text] [Related]
10. Simple Preparation of Thiol-Ene Particles in Glycerol and Surface Functionalization by Thiol-Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT-FRP). Hoffmann C; Chiaula V; Yu L; Pinelo M; Woodley JM; Daugaard AE Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29065219 [TBL] [Abstract][Full Text] [Related]
11. Controlled polymerization for the development of bioconjugate polymers and materials. Miura Y J Mater Chem B; 2020 Mar; 8(10):2010-2019. PubMed ID: 32073035 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization. Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875 [TBL] [Abstract][Full Text] [Related]
13. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications. Hu Y; Li Y; Xu FJ Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064 [TBL] [Abstract][Full Text] [Related]
14. Degradable polyesters through chain linking for packaging and biomedical applications. Seppälä JV; Helminen AO; Korhonen H Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210 [TBL] [Abstract][Full Text] [Related]
15. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742 [TBL] [Abstract][Full Text] [Related]
16. One step preparation of polymeric maltitol particles, from a sugar molecule, maltitol for biomedical applications. Sahiner N Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():205-212. PubMed ID: 29752090 [TBL] [Abstract][Full Text] [Related]
17. Adaptable polymerization platform for therapeutics with tunable biodegradability. Hrochová M; Kotrchová L; Frejková M; Konefał R; Gao S; Fang J; Kostka L; Etrych T Acta Biomater; 2023 Nov; 171():417-427. PubMed ID: 37696413 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. Siegwart DJ; Bencherif SA; Srinivasan A; Hollinger JO; Matyjaszewski K J Biomed Mater Res A; 2008 Nov; 87(2):345-58. PubMed ID: 18181103 [TBL] [Abstract][Full Text] [Related]
19. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells. Shenoi RA; Narayanannair JK; Hamilton JL; Lai BF; Horte S; Kainthan RK; Varghese JP; Rajeev KG; Manoharan M; Kizhakkedathu JN J Am Chem Soc; 2012 Sep; 134(36):14945-57. PubMed ID: 22906064 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems. Shenoi RA; Lai BF; Imran ul-haq M; Brooks DE; Kizhakkedathu JN Biomaterials; 2013 Aug; 34(25):6068-81. PubMed ID: 23688604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]