These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30387383)

  • 1. Survey and Insights into Unmanned Aerial-Vehicle-Based Detection and Documentation of Clandestine Graves and Human Remains.
    Murray B; Anderson DT; Wescott DJ; Moorhead R; Anderson MF
    Hum Biol; 2018 Jan; 90(1):45-61. PubMed ID: 30387383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection of clandestine graves in an arid environment using thermal imaging deployed from an unmanned aerial vehicle.
    Alawadhi A; Eliopoulos C; Bezombes F
    J Forensic Sci; 2023 Jul; 68(4):1286-1291. PubMed ID: 37194428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera.
    Evers R; Masters P
    Forensic Sci Int; 2018 Aug; 289():408-418. PubMed ID: 30025566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
    Parsons M; Bratanov D; Gaston KJ; Gonzalez F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects.
    Yuan S; Li Y; Bao F; Xu H; Yang Y; Yan Q; Zhong S; Yin H; Xu J; Huang Z; Lin J
    Sci Total Environ; 2023 Feb; 858(Pt 1):159741. PubMed ID: 36349622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture.
    Maes WH; Steppe K
    Trends Plant Sci; 2019 Feb; 24(2):152-164. PubMed ID: 30558964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey.
    Urbanová P; Jurda M; Vojtíšek T; Krajsa J
    Forensic Sci Int; 2017 Dec; 281():52-62. PubMed ID: 29101908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using unmanned aerial vehicles with thermal-image acquisition cameras for animal surveys: a case study on the Sichuan snub-nosed monkey in the Qinling Mountains.
    He G; Yang H; Pan R; Sun Y; Zheng P; Wang J; Jin X; Zhang J; Li B; Guo S
    Integr Zool; 2020 Jan; 15(1):79-86. PubMed ID: 31305022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
    Allison RS; Johnston JM; Craig G; Jennings S
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2018 Outstanding Trainee Presentations in Anthropological Genetics Awards Announced.
    Hum Biol; 2018 Jan; 90(1):83-84. PubMed ID: 30387381
    [No Abstract]   [Full Text] [Related]  

  • 15. Research progress of inland river water quality monitoring technology based on unmanned aerial vehicle hyperspectral imaging technology.
    Bai X; Wang J; Chen R; Kang Y; Ding Y; Lv Z; Ding D; Feng H
    Environ Res; 2024 Sep; 257():119254. PubMed ID: 38815715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.
    Sandino J; Pegg G; Gonzalez F; Smith G
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clandestine multiple graves in Malaysia: The first mass identification operation of human skeletal remains.
    Mohd Noor MS; Khoo LS; Zamaliana Alias WZ; Hasmi AH; Ibrahim MA; Mahmood MS
    Forensic Sci Int; 2017 Sep; 278():410.e1-410.e9. PubMed ID: 28698062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.