These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 30387446)
1. Molecular dynamics simulations of the thermal conductivity of graphene for application in wearable devices. Zhan N; Chen B; Li C; Shen PK Nanotechnology; 2019 Jan; 30(2):025705. PubMed ID: 30387446 [TBL] [Abstract][Full Text] [Related]
2. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Wei N; Xu L; Wang HQ; Zheng JC Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391 [TBL] [Abstract][Full Text] [Related]
3. Anomalous Thermal Response of Graphene Kirigami Induced by Tailored Shape to Uniaxial Tensile Strain: A Molecular Dynamics Study. Li H; Cheng G; Liu Y; Zhong D Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936573 [TBL] [Abstract][Full Text] [Related]
4. Shear deformation-induced anisotropic thermal conductivity of graphene. Cui L; Shi S; Wei G; Du X Phys Chem Chem Phys; 2018 Jan; 20(2):951-957. PubMed ID: 29231938 [TBL] [Abstract][Full Text] [Related]
5. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization. Wei A; Lahkar S; Li X; Li S; Ye H ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588 [TBL] [Abstract][Full Text] [Related]
6. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene. Mohammadi R; Ghaderi MR; Hajian E Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695 [TBL] [Abstract][Full Text] [Related]
7. Unconventional and Dynamically Anisotropic Thermal Conductivity in Compressed Flexible Graphene Foams. Xiong Z; Marconnet A; Ruan X ACS Appl Mater Interfaces; 2022 Nov; 14(43):48960-48966. PubMed ID: 36256868 [TBL] [Abstract][Full Text] [Related]
8. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051 [TBL] [Abstract][Full Text] [Related]
9. Effect of Defects on the Mechanical and Thermal Properties of Graphene. Li M; Deng T; Zheng B; Zhang Y; Liao Y; Zhou H Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30832437 [TBL] [Abstract][Full Text] [Related]
10. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports. Gao Y; Xu B ACS Appl Mater Interfaces; 2017 Oct; 9(39):34506-34517. PubMed ID: 28895714 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures. Huang Y; Gong Q; Zhang Q; Shao Y; Wang J; Jiang Y; Zhao M; Zhuang D; Liang J Nanoscale; 2017 Feb; 9(6):2340-2347. PubMed ID: 28139800 [TBL] [Abstract][Full Text] [Related]
13. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties. K V S D; Kannam SK; Sathian SP Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790 [TBL] [Abstract][Full Text] [Related]
14. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Mortazavi B; Pötschke M; Cuniberti G Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics. Feng CP; Chen LB; Tian GL; Wan SS; Bai L; Bao RY; Liu ZY; Yang MB; Yang W ACS Appl Mater Interfaces; 2019 May; 11(20):18739-18745. PubMed ID: 31026137 [TBL] [Abstract][Full Text] [Related]
16. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions. Meng X; Pan H; Zhu C; Chen Z; Lu T; Xu D; Li Y; Zhu S ACS Appl Mater Interfaces; 2018 Jul; 10(26):22611-22622. PubMed ID: 29888597 [TBL] [Abstract][Full Text] [Related]
17. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125 [TBL] [Abstract][Full Text] [Related]
18. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671 [TBL] [Abstract][Full Text] [Related]
19. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation. Zhang C; Hao XL; Wang CX; Wei N; Rabczuk T Sci Rep; 2017 Jan; 7():41398. PubMed ID: 28120921 [TBL] [Abstract][Full Text] [Related]
20. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. Liu Y; Hu C; Huang J; Sumpter BG; Qiao R J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]