These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30387599)

  • 1. Influence of Humidity on Contact Resistance in Graphene Devices.
    Quellmalz A; Smith AD; Elgammal K; Fan X; Delin A; Östling M; Lemme M; Gylfason KB; Niklaus F
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41738-41746. PubMed ID: 30387599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive graphene humidity sensors with rapid and direct electrical readout.
    Smith AD; Elgammal K; Niklaus F; Delin A; Fischer AC; Vaziri S; Forsberg F; Råsander M; Hugosson H; Bergqvist L; Schröder S; Kataria S; Östling M; Lemme MC
    Nanoscale; 2015 Dec; 7(45):19099-109. PubMed ID: 26523705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of Contact Resistance at Ferromagnetic Metal-Graphene Interfaces.
    Khoo KH; Leong WS; Thong JT; Quek SY
    ACS Nano; 2016 Dec; 10(12):11219-11227. PubMed ID: 28024386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical properties of graphene-metal contacts.
    Cusati T; Fiori G; Gahoi A; Passi V; Lemme MC; Fortunelli A; Iannaccone G
    Sci Rep; 2017 Jul; 7(1):5109. PubMed ID: 28698652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of Graphene's RF Impedance through Thru-Reflect-Line Calibration.
    Colmiais I; Silva V; Borme J; Alpuim P; Mendes PM
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single GaAs Nanowire/Graphene Hybrid Devices Fabricated by a Position-Controlled Microtransfer and an Imprinting Technique for an Embedded Structure.
    Mukherjee A; Yun H; Shin DH; Nam J; Munshi AM; Dheeraj DL; Fimland BO; Weman H; Kim KS; Lee SW; Kim DC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13514-13522. PubMed ID: 30892012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-contact-resistance graphene devices with nickel-etched-graphene contacts.
    Leong WS; Gong H; Thong JT
    ACS Nano; 2014 Jan; 8(1):994-1001. PubMed ID: 24328346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical transport and breakdown in graphene multilayers loaded with electron beam induced deposited platinum.
    Kulshrestha N; Misra A; Koratkar N; Misra DS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3424-30. PubMed ID: 23489064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-scaling graphene electronics by reproducible metal-graphene contacts.
    Asadi K; Timmering EC; Geuns TC; Pesquera A; Centeno A; Zurutuza A; Klootwijk JH; Blom PW; de Leeuw DM
    ACS Appl Mater Interfaces; 2015 May; 7(18):9429-35. PubMed ID: 25901791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial icelike water local doping of graphene.
    Hong Y; Wang S; Li Q; Song X; Wang Z; Zhang X; Besenbacher F; Dong M
    Nanoscale; 2019 Nov; 11(41):19334-19340. PubMed ID: 31423505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Substrate Microstructure on the Transport Properties of CVD-Graphene.
    Babichev AV; Rykov SA; Tchernycheva M; Smirnov AN; Davydov VY; Kumzerov YA; Butko VY
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):240-6. PubMed ID: 26652757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.
    Lang F; Gluba MA; Albrecht S; Rappich J; Korte L; Rech B; Nickel NH
    J Phys Chem Lett; 2015 Jul; 6(14):2745-50. PubMed ID: 26266857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of Relative Humidity and Dwell Time on Silica/Graphene Adhesion Force of a Cone-Plane Contact.
    Shi K; Hu M; Huang P
    Langmuir; 2022 Oct; 38(41):12432-12440. PubMed ID: 36194826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of waveguide-integrated graphene devices for photonic gas sensing.
    Cheng Z; Goda K
    Nanotechnology; 2016 Dec; 27(50):505206. PubMed ID: 27855120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the resistance distribution at the contact between molybdenum disulfide and metals.
    Guo Y; Han Y; Li J; Xiang A; Wei X; Gao S; Chen Q
    ACS Nano; 2014 Aug; 8(8):7771-9. PubMed ID: 25032780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroless Nickel Deposition: An Alternative for Graphene Contacting.
    Popescu SM; Barlow AJ; Ramadan S; Ganti S; Ghosh B; Hedley J
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31359-31367. PubMed ID: 27766853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications.
    Babichev AV; Gasumyants VE; Egorov AY; Vitusevich S; Tchernycheva M
    Nanotechnology; 2014 Aug; 25(33):335707. PubMed ID: 25074754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure edge-contact devices on single-layer-CVD-graphene integrated into a single chip.
    Behera S
    Sci Rep; 2023 Jun; 13(1):10588. PubMed ID: 37391542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.