These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30387599)

  • 21. Data for direct chemical deposition of PbS on chemical vapor deposition grown-graphene for high performance photovoltaic infrared photo-detectors.
    Ampadu EK; Kim J; Oh E; Lee DY; Kim KS
    Data Brief; 2020 Oct; 32():106273. PubMed ID: 32984467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide.
    Arif T; Colas G; Filleter T
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22537-22544. PubMed ID: 29894628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Iemmo L; Romeo F; Santandrea S; Gambardella U
    J Phys Condens Matter; 2013 Apr; 25(15):155303. PubMed ID: 23528822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of metal-nanowire electrical contacts by measuring contact end resistance.
    Park H; Beresford R; Ha R; Choi HJ; Shin H; Xu J
    Nanotechnology; 2012 Jun; 23(24):245201. PubMed ID: 22641224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable hole doping of graphene for low electrical resistance and high optical transparency.
    Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR
    Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene Translucency and Interfacial Interactions in the Gold/Graphene/SiC System.
    Caccia M; Giuranno D; Molina-Jorda JM; Moral M; Nowak R; Ricci E; Sobczak N; Narciso J; Fernández Sanz J
    J Phys Chem Lett; 2018 Jul; 9(14):3850-3855. PubMed ID: 29939752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.
    Chung J; Hwang G; Kim H; Yang W; Kwon O
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9077-82. PubMed ID: 26726646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different Evolution Behaviors of Adhesion Force with Relative Humidity at Silica/Silica and Silica/Graphene Interfaces Studied using Atomic Force Microscopy.
    Lai T; Zhu T; Chen Y; Guo M
    Langmuir; 2021 Nov; 37(44):13075-13084. PubMed ID: 34704765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon.
    Murray R; O'Neill O; Vaughan E; Iacopino D; Blake A; Lyons C; O'Connell D; O'Brien J; Quinn AJ
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35764059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping.
    Jalilian R; Jauregui LA; Lopez G; Tian J; Roecker C; Yazdanpanah MM; Cohn RW; Jovanovic I; Chen YP
    Nanotechnology; 2011 Jul; 22(29):295705. PubMed ID: 21677372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reliable metal-graphene contact formation process flows in a CMOS-compatible environment.
    Elviretti M; Lisker M; Lukose R; Lukosius M; Akhtar F; Mai A
    Nanoscale Adv; 2022 Oct; 4(20):4373-4380. PubMed ID: 36321140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene.
    Panda J; Ramu M; Karis O; Sarkar T; Kamalakar MV
    ACS Nano; 2020 Oct; 14(10):12771-12780. PubMed ID: 32945650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. van der Waals Contact Engineering of Graphene Field-Effect Transistors for Large-Area Flexible Electronics.
    Liu F; Navaraj WT; Yogeswaran N; Gregory DH; Dahiya R
    ACS Nano; 2019 Mar; 13(3):3257-3268. PubMed ID: 30835440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes.
    Leong WS; Luo X; Li Y; Khoo KH; Quek SY; Thong JT
    ACS Nano; 2015 Jan; 9(1):869-77. PubMed ID: 25517793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts.
    Jia K; Su Y; Zhan J; Shahzad K; Zhu H; Zhao C; Luo J
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.
    Foley BM; Hernández SC; Duda JC; Robinson JT; Walton SG; Hopkins PE
    Nano Lett; 2015 Aug; 15(8):4876-82. PubMed ID: 26125524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatics of metal-graphene interfaces: sharp p-n junctions for electron-optical applications.
    Chaves FA; Jiménez D; Santos JE; Bøggild P; Caridad JM
    Nanoscale; 2019 May; 11(21):10273-10281. PubMed ID: 31086868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.