BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30387612)

  • 1. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics.
    Dreier RF; Ahrné E; Broz P; Schmidt A
    J Proteome Res; 2019 Jan; 18(1):493-507. PubMed ID: 30387612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of elemental mass spectrometry in phosphoproteomic applications.
    Maes E; Tirez K; Baggerman G; Valkenborg D; Schoofs L; Encinar JR; Mertens I
    Mass Spectrom Rev; 2016; 35(3):350-60. PubMed ID: 25139451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAIMS and Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply Phosphorylated Peptides.
    Zhao H; Cunningham DL; Creese AJ; Heath JK; Cooper HJ
    J Proteome Res; 2015 Dec; 14(12):5077-87. PubMed ID: 26503514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking common quantification strategies for large-scale phosphoproteomics.
    Hogrebe A; von Stechow L; Bekker-Jensen DB; Weinert BT; Kelstrup CD; Olsen JV
    Nat Commun; 2018 Mar; 9(1):1045. PubMed ID: 29535314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction.
    Ahsan N; Belmont J; Chen Z; Clifton JG; Salomon AR
    J Proteomics; 2017 Aug; 165():69-74. PubMed ID: 28634120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling virus-induced cellular signaling cascades by label-free quantitative phosphoproteomics.
    Hunziker A; Stertz S
    STAR Protoc; 2022 Mar; 3(1):101089. PubMed ID: 35535160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics.
    Osinalde N; Aloria K; Omaetxebarria MJ; Kratchmarova I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():29-38. PubMed ID: 28441545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer.
    Cheng LC; Li Z; Graeber TG; Graham NA; Drake JM
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry.
    Manes NP; Dong L; Zhou W; Du X; Reghu N; Kool AC; Choi D; Bailey CL; Petricoin EF; Liotta LA; Popov SG
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000927. PubMed ID: 21189417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites.
    Bauer M; Ahrné E; Baron AP; Glatter T; Fava LL; Santamaria A; Nigg EA; Schmidt A
    J Proteome Res; 2014 Dec; 13(12):5973-88. PubMed ID: 25330945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.