BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30387612)

  • 21. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells.
    Gerritsen JS; White FM
    Expert Rev Proteomics; 2021 Aug; 18(8):661-674. PubMed ID: 34468274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Cellular Phosphorylation Signaling Pathways into Chromatin and Down to the Gene Level.
    Han Y; Yuan ZF; Molden RC; Garcia BA
    Mol Cell Proteomics; 2016 Mar; 15(3):834-53. PubMed ID: 26543102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics.
    Tong M; Liu Z; Li J; Wei X; Shi W; Liang C; Yu C; Huang R; Lin Y; Wang X; Wang S; Wang Y; Huang J; Wang Y; Li T; Qin J; Zhan D; Ji ZL
    Comput Biol Med; 2024 May; 174():108391. PubMed ID: 38613887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. phuEGO: A Network-Based Method to Reconstruct Active Signaling Pathways From Phosphoproteomics Datasets.
    Giudice G; Chen H; Koutsandreas T; Petsalaki E
    Mol Cell Proteomics; 2024 Jun; 23(6):100771. PubMed ID: 38642805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Multilayer Heterogeneous Networks to Infer Functions of Phosphorylated Sites.
    Watson J; Schwartz JM; Francavilla C
    J Proteome Res; 2021 Jul; 20(7):3532-3548. PubMed ID: 34164982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling.
    Riley NM; Coon JJ
    Anal Chem; 2016 Jan; 88(1):74-94. PubMed ID: 26539879
    [No Abstract]   [Full Text] [Related]  

  • 27. The Emerging Potential of Advanced Targeted Mass Spectrometry to Become a Routine Tool for Protein Quantification in Biomedical Research.
    Varela MA; Schmidt A
    Chimia (Aarau); 2022 Feb; 76(1-2):81-89. PubMed ID: 38069753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying Novel Signaling Pathways: An Exercise Scientists Guide to Phosphoproteomics.
    Wilson GM; Blanco R; Coon JJ; Hornberger TA
    Exerc Sport Sci Rev; 2018 Apr; 46(2):76-85. PubMed ID: 29346157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass spectrometry-based phosphoproteomics in clinical applications.
    Wu X; Liu YK; Iliuk AB; Tao WA
    Trends Analyt Chem; 2023 Jun; 163():. PubMed ID: 37215489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics.
    Oliinyk D; Will A; Schneidmadel FR; Böhme M; Rinke J; Hochhaus A; Ernst T; Hahn N; Geis C; Lubeck M; Raether O; Humphrey SJ; Meier F
    Mol Syst Biol; 2024 Jun; ():. PubMed ID: 38907068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring pathway database coverage of the phosphoproteome.
    Huckstep H; Fearnley LG; Davis MJ
    PeerJ; 2021; 9():e11298. PubMed ID: 34113485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass Spectrometry Targeted Assays as a Tool to Improve Our Understanding of Post-translational Modifications in Pathogenic Bacteria.
    Soares NC; Blackburn JM
    Front Microbiol; 2016; 7():1216. PubMed ID: 27540373
    [No Abstract]   [Full Text] [Related]  

  • 33. Proteomics goes parallel.
    Collins BC; Aebersold R
    Nat Biotechnol; 2018 Nov; 36(11):1051-1053. PubMed ID: 30412198
    [No Abstract]   [Full Text] [Related]  

  • 34. ProteomicsBrowser: MS/proteomics data visualization and investigation.
    Peng G; Wilson R; Tang Y; Lam TT; Nairn AC; Williams K; Zhao H
    Bioinformatics; 2019 Jul; 35(13):2313-2314. PubMed ID: 30462190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry.
    Klykov O; Steigenberger B; Pektaş S; Fasci D; Heck AJR; Scheltema RA
    Nat Protoc; 2018 Dec; 13(12):2964-2990. PubMed ID: 30446747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The PRIDE database and related tools and resources in 2019: improving support for quantification data.
    Perez-Riverol Y; Csordas A; Bai J; Bernal-Llinares M; Hewapathirana S; Kundu DJ; Inuganti A; Griss J; Mayer G; Eisenacher M; Pérez E; Uszkoreit J; Pfeuffer J; Sachsenberg T; Yilmaz S; Tiwary S; Cox J; Audain E; Walzer M; Jarnuczak AF; Ternent T; Brazma A; Vizcaíno JA
    Nucleic Acids Res; 2019 Jan; 47(D1):D442-D450. PubMed ID: 30395289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins.
    Zhang C; Shi Z; Han Y; Ren Y; Hao P
    J Proteome Res; 2019 Jan; 18(1):461-468. PubMed ID: 30394099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments.
    Hughes CS; Moggridge S; Müller T; Sorensen PH; Morin GB; Krijgsveld J
    Nat Protoc; 2019 Jan; 14(1):68-85. PubMed ID: 30464214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RawTools: Rapid and Dynamic Interrogation of Orbitrap Data Files for Mass Spectrometer System Management.
    Kovalchik KA; Colborne S; Spencer SE; Sorensen PH; Chen DDY; Morin GB; Hughes CS
    J Proteome Res; 2019 Feb; 18(2):700-708. PubMed ID: 30462513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative metaproteomics of medieval dental calculus reveals individual oral health status.
    Jersie-Christensen RR; Lanigan LT; Lyon D; Mackie M; Belstrøm D; Kelstrup CD; Fotakis AK; Willerslev E; Lynnerup N; Jensen LJ; Cappellini E; Olsen JV
    Nat Commun; 2018 Nov; 9(1):4744. PubMed ID: 30459334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.