These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30387735)

  • 1. Design and Development of a Portable Exoskeleton for Hand Rehabilitation.
    Wang D; Meng Q; Meng Q; Li X; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2376-2386. PubMed ID: 30387735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors.
    Shi XQ; Heung HL; Tang ZQ; Li Z; Tong KY
    J Stroke Cerebrovasc Dis; 2021 Jul; 30(7):105812. PubMed ID: 33895427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial.
    Qian Q; Nam C; Guo Z; Huang Y; Hu X; Ng SC; Zheng Y; Poon W
    J Neuroeng Rehabil; 2019 Jun; 16(1):64. PubMed ID: 31159822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation- a pilot study.
    Büsching I; Sehle A; Stürner J; Liepert J
    J Neuroeng Rehabil; 2018 Aug; 15(1):72. PubMed ID: 30068372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke.
    Rabadi MH; Rabadi FM
    Arch Phys Med Rehabil; 2006 Jul; 87(7):962-6. PubMed ID: 16813784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings.
    Tu X; Han H; Huang J; Li J; Su C; Jiang X; He J
    J Healthc Eng; 2017; 2017():1282934. PubMed ID: 29065566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of task-based mirror therapy on motor recovery of the upper extremity in chronic stroke patients: a pilot study.
    Arya KN; Pandian S
    Top Stroke Rehabil; 2013; 20(3):210-7. PubMed ID: 23841968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation.
    He C; Xiong CH; Chen ZJ; Fan W; Huang XL; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1795-1805. PubMed ID: 34428146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Match and mismatch between objective and subjective improvements in upper limb function after stroke.
    van Delden AL; Peper CL; Beek PJ; Kwakkel G
    Disabil Rehabil; 2013; 35(23):1961-7. PubMed ID: 23611500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke.
    Yurkewich A; Kozak IJ; Hebert D; Wang RH; Mihailidis A
    J Neuroeng Rehabil; 2020 Feb; 17(1):33. PubMed ID: 32102668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.