These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30387751)

  • 1. Wearable Motion-Based Heart Rate at Rest: A Workplace Evaluation.
    Hernandez J; McDuff D; Quigley K; Maes P; Picard RW
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1920-1927. PubMed ID: 30387751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use.
    Chacon PJ; Limeng Pu ; da Costa TH; Young-Ho Shin ; Ghomian T; Shamkhalichenar H; Hsiao-Chun Wu ; Irving BA; Jin-Woo Choi
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1505-1513. PubMed ID: 30307850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors.
    Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Based Measurement of Heart Rate from Ballistocardiographic Head Movements Using Unsupervised Clustering.
    Lee H; Cho A; Lee S; Whang M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Automatic Anxiety Detection in Autism: A Real-Time Algorithm for Detecting Physiological Arousal in the Presence of Motion.
    Puli A; Kushki A
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):646-657. PubMed ID: 31144623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone Orientation Estimation Algorithm Combining Kalman Filter With Gradient Descent.
    Yean S; Lee BS; Yeo CK; Vun CH; Oh HL
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1421-1433. PubMed ID: 29990245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WaistonBelt X: A Belt-Type Wearable Device with Sensing and Intervention Toward Health Behavior Change.
    Nakamura Y; Matsuda Y; Arakawa Y; Yasumoto K
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping.
    Zhang Q; Zhou D; Zeng X
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2562-2574. PubMed ID: 28113198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of physiological workload assessment methods using heart rate and accelerometry for a smart wearable system.
    Yang L; Lu K; Forsman M; Lindecrantz K; Seoane F; Ekblom Ö; Eklund J
    Ergonomics; 2019 May; 62(5):694-705. PubMed ID: 30806164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of Wrist-Worn photoplethysmography devices to measure heart rate: A systematic review and meta-analysis.
    Zhang Y; Weaver RG; Armstrong B; Burkart S; Zhang S; Beets MW
    J Sports Sci; 2020 Sep; 38(17):2021-2034. PubMed ID: 32552580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device.
    Zhang X; Kou W; Chang EI; Gao H; Fan Y; Xu Y
    Comput Biol Med; 2018 Dec; 103():71-81. PubMed ID: 30342269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Usability Study of Physiological Measurement in School Using Wearable Sensors.
    Thammasan N; Stuldreher IV; Schreuders E; Giletta M; Brouwer AM
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings.
    Liu X; Rajan S; Ramasarma N; Bonato P; Lee SI
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a smartphone application and wearable sensor for measurements of wrist motions.
    Engstrand F; Tesselaar E; Gestblom R; Farnebo S
    J Hand Surg Eur Vol; 2021 Dec; 46(10):1057-1063. PubMed ID: 33874816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophone: Physiology monitoring from peripheral smartphone motions.
    Hernandez J; McDuff DJ; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7180-3. PubMed ID: 26737948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Shoe-Assisted Evaluation of Using a Single Trunk/Pocket-Worn Accelerometer to Detect Gait Phases.
    Avvenuti M; Carbonaro N; Cimino MGCA; Cola G; Tognetti A; Vaglini G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
    Ranganathan R; Wang R; Dong B; Biswas S
    Physiol Meas; 2017 Nov; 38(12):2222-2234. PubMed ID: 29099724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Heart Rate and Respiratory Rate Estimation by Inertial Sensors Embedded in a Virtual Reality Headset.
    Floris C; Solbiati S; Landreani F; Damato G; Lenzi B; Megale V; Caiani EG
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.