These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30387755)

  • 1. Intra-Slice Motion Correction of Intravascular OCT Images Using Deep Features.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    IEEE J Biomed Health Inform; 2019 May; 23(3):931-941. PubMed ID: 30387755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Method for Motion Artifact Correction in Intravascular Photoacoustic Image Sequence.
    Zheng S; Jiejie D; Yue Y; Qi M; Huifeng S
    IEEE Trans Med Imaging; 2023 Jan; 42(1):66-78. PubMed ID: 36037455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA.
    Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD
    Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumen Segmentation in Intravascular Optical Coherence Tomography Using Backscattering Tracked and Initialized Random Walks.
    Guha Roy A; Conjeti S; Carlier SG; Dutta PK; Kastrati A; Laine AF; Navab N; Katouzian A; Sheet D
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):606-14. PubMed ID: 25700476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.
    Yong YL; Tan LK; McLaughlin RA; Chee KH; Liew YM
    J Biomed Opt; 2017 Dec; 22(12):1-9. PubMed ID: 29274144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.
    Bengs M; Gessert N; Schlüter M; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):943-952. PubMed ID: 32445128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided image analysis algorithm to enhance in vivo diagnosis of plaque erosion by intravascular optical coherence tomography.
    Wang Z; Jia H; Tian J; Soeda T; Vergallo R; Minami Y; Lee H; Aguirre A; Fujimoto JG; Jang IK
    Circ Cardiovasc Imaging; 2014 Sep; 7(5):805-10. PubMed ID: 25034595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
    Verjans JW; Osborn EA; Ughi GJ; Calfon Press MA; Hamidi E; Antoniadis AP; Papafaklis MI; Conrad MF; Libby P; Stone PH; Cambria RP; Tearney GJ; Jaffer FA
    JACC Cardiovasc Imaging; 2016 Sep; 9(9):1087-1095. PubMed ID: 27544892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging.
    Abdolmanafi A; Cheriet F; Duong L; Ibrahim R; Dahdah N
    J Biophotonics; 2020 Jan; 13(1):e201900112. PubMed ID: 31423740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of coronary calcifications in optical coherence tomography imaging using deep learning.
    Avital Y; Madar A; Arnon S; Koifman E
    Sci Rep; 2021 May; 11(1):11269. PubMed ID: 34050203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in quantitative and qualitative analysis of intravascular ultrasound and frequency domain optical coherence tomography.
    Abnousi F; Waseda K; Kume T; Otake H; Kawarada O; Yong CM; Fitzgerald PJ; Honda Y; Yeung AC; Fearon WF
    Catheter Cardiovasc Interv; 2013 Sep; 82(3):E192-9. PubMed ID: 23412754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Postlumpectomy Breast Margin Assessment Utilizing Convolutional Neural Network Based Optical Coherence Tomography Image Classification Method.
    Mojahed D; Ha RS; Chang P; Gan Y; Yao X; Angelini B; Hibshoosh H; Taback B; Hendon CP
    Acad Radiol; 2020 May; 27(5):e81-e86. PubMed ID: 31324579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.