These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30387757)

  • 61. Comparative evaluation of active contour model extensions for automated cardiac MR image segmentation by regional error assessment.
    Nguyen D; Masterson K; Vallée JP
    MAGMA; 2007 Apr; 20(2):69-82. PubMed ID: 17340125
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning.
    Dangi S; Yaniv Z; Linte CA
    Stat Atlases Comput Models Heart; 2019; 11395():21-31. PubMed ID: 31179448
    [TBL] [Abstract][Full Text] [Related]  

  • 64. FoCA: A new framework of coupled geometric active contours for segmentation of 3D cardiac magnetic resonance images.
    Khamechian MB; Saadatmand-Tarzjan M
    Magn Reson Imaging; 2018 Sep; 51():51-60. PubMed ID: 29698668
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long- and short-axis information.
    Wei D; Sun Y; Ong SH; Chai P; Teo LL; Low AF
    Med Image Anal; 2013 Aug; 17(6):685-97. PubMed ID: 23562069
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods.
    Carneiro G; Nascimento JC; Freitas A
    IEEE Trans Image Process; 2012 Mar; 21(3):968-82. PubMed ID: 21947526
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation.
    Zhen X; Wang Z; Islam A; Bhaduri M; Chan I; Li S
    Med Image Anal; 2016 May; 30():120-129. PubMed ID: 26919699
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct estimation of cardiac bi-ventricular volumes with regression forests.
    Zhen X; Wang Z; Islam A; Bhaduri M; Chan I; Li S
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):586-93. PubMed ID: 25485427
    [TBL] [Abstract][Full Text] [Related]  

  • 70. MRLN: Multi-Task Relational Learning Network for MRI Vertebral Localization, Identification, and Segmentation.
    Zhang R; Xiao X; Liu Z; Li Y; Li S
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2902-2911. PubMed ID: 31985447
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of accurate human head models for personalized electromagnetic dosimetry using deep learning.
    Rashed EA; Gomez-Tames J; Hirata A
    Neuroimage; 2019 Nov; 202():116132. PubMed ID: 31472248
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sparse group composition for robust left ventricular epicardium segmentation.
    Wang B; Gu X; Fan C; Xie H; Zhang S; Tian X; Gu L
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 1():56-63. PubMed ID: 26198360
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Segmentation and visualization of left atrium through a unified deep learning framework.
    Du X; Yin S; Tang R; Liu Y; Song Y; Zhang Y; Liu H; Li S
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):589-600. PubMed ID: 32103401
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning.
    Xu C; Howey J; Ohorodnyk P; Roth M; Zhang H; Li S
    Med Image Anal; 2020 Jan; 59():101568. PubMed ID: 31622838
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets.
    Feng C; Zhang S; Zhao D; Li C
    Med Phys; 2016 Jun; 43(6):2741-2755. PubMed ID: 27277021
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method.
    Qian X; Lin Y; Zhao Y; Wang J; Liu J; Zhuang X
    Med Phys; 2015 Mar; 42(3):1424-35. PubMed ID: 25735296
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
    Sun J; Chen W; Peng S; Liu B
    J Med Syst; 2019 Jun; 43(7):221. PubMed ID: 31177346
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning.
    Ma Z; Zhou S; Wu X; Zhang H; Yan W; Sun S; Zhou J
    Phys Med Biol; 2019 Jan; 64(2):025005. PubMed ID: 30524024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.