These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30387773)
1. Characterization and structure determination of a llama-derived nanobody targeting the J-base binding protein 1. van Beusekom B; Heidebrecht T; Adamopoulos A; Fish A; Pardon E; Steyaert J; Joosten RP; Perrakis A Acta Crystallogr F Struct Biol Commun; 2018 Nov; 74(Pt 11):690-695. PubMed ID: 30387773 [TBL] [Abstract][Full Text] [Related]
2. The structural basis for recognition of base J containing DNA by a novel DNA binding domain in JBP1. Heidebrecht T; Christodoulou E; Chalmers MJ; Jan S; Ter Riet B; Grover RK; Joosten RP; Littler D; van Luenen H; Griffin PR; Wentworth P; Borst P; Perrakis A Nucleic Acids Res; 2011 Jul; 39(13):5715-28. PubMed ID: 21415010 [TBL] [Abstract][Full Text] [Related]
3. The domain architecture of the protozoan protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. Adamopoulos A; Heidebrecht T; Roosendaal J; Touw WG; Phan IQ; Beijnen J; Perrakis A J Biol Chem; 2019 Aug; 294(34):12815-12825. PubMed ID: 31292194 [TBL] [Abstract][Full Text] [Related]
4. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Yu Z; Genest PA; ter Riet B; Sweeney K; DiPaolo C; Kieft R; Christodoulou E; Perrakis A; Simmons JM; Hausinger RP; van Luenen HG; Rigden DJ; Sabatini R; Borst P Nucleic Acids Res; 2007; 35(7):2107-15. PubMed ID: 17389644 [TBL] [Abstract][Full Text] [Related]
5. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Cliffe LJ; Kieft R; Southern T; Birkeland SR; Marshall M; Sweeney K; Sabatini R Nucleic Acids Res; 2009 Apr; 37(5):1452-62. PubMed ID: 19136460 [TBL] [Abstract][Full Text] [Related]
6. Binding of the J-binding protein to DNA containing glucosylated hmU (base J) or 5-hmC: evidence for a rapid conformational change upon DNA binding. Heidebrecht T; Fish A; von Castelmur E; Johnson KA; Zaccai G; Borst P; Perrakis A J Am Chem Soc; 2012 Aug; 134(32):13357-65. PubMed ID: 22775585 [TBL] [Abstract][Full Text] [Related]
7. Two thymidine hydroxylases differentially regulate the formation of glucosylated DNA at regions flanking polymerase II polycistronic transcription units throughout the genome of Trypanosoma brucei. Cliffe LJ; Siegel TN; Marshall M; Cross GA; Sabatini R Nucleic Acids Res; 2010 Jul; 38(12):3923-35. PubMed ID: 20215442 [TBL] [Abstract][Full Text] [Related]
10. Structure and binding properties of a cameloid nanobody raised against KDM5B. Wiuf A; Kristensen LH; Kristensen O; Dorosz J; Jensen J; Gajhede M Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1235-41. PubMed ID: 26457512 [TBL] [Abstract][Full Text] [Related]
11. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing. Genest PA; Baugh L; Taipale A; Zhao W; Jan S; van Luenen HG; Korlach J; Clark T; Luong K; Boitano M; Turner S; Myler PJ; Borst P Nucleic Acids Res; 2015 Feb; 43(4):2102-15. PubMed ID: 25662217 [TBL] [Abstract][Full Text] [Related]
12. Nanobody-aided crystallization of the transcription regulator PaaR2 from Escherichia coli O157:H7. De Bruyn P; Prolič-Kalinšek M; Vandervelde A; Malfait M; Sterckx YGJ; Sobott F; Hadži S; Pardon E; Steyaert J; Loris R Acta Crystallogr F Struct Biol Commun; 2021 Oct; 77(Pt 10):374-384. PubMed ID: 34605442 [TBL] [Abstract][Full Text] [Related]
13. Camelid nanobodies: killing two birds with one stone. Desmyter A; Spinelli S; Roussel A; Cambillau C Curr Opin Struct Biol; 2015 Jun; 32():1-8. PubMed ID: 25614146 [TBL] [Abstract][Full Text] [Related]
14. Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures. Hansen SB; Laursen NS; Andersen GR; Andersen KR Acta Crystallogr D Struct Biol; 2017 Oct; 73(Pt 10):804-813. PubMed ID: 28994409 [TBL] [Abstract][Full Text] [Related]
15. Recognition of base J in duplex DNA by J-binding protein. Sabatini R; Meeuwenoord N; van Boom JH; Borst P J Biol Chem; 2002 Jan; 277(2):958-66. PubMed ID: 11700315 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli. Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607 [TBL] [Abstract][Full Text] [Related]
17. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior. Kromann-Hansen T; Oldenburg E; Yung KW; Ghassabeh GH; Muyldermans S; Declerck PJ; Huang M; Andreasen PA; Ngo JC J Biol Chem; 2016 Jul; 291(29):15156-68. PubMed ID: 27226628 [TBL] [Abstract][Full Text] [Related]
18. Distant sequence regions of JBP1 contribute to J-DNA binding. de Vries I; Ammerlaan D; Heidebrecht T; Celie PH; Geerke DP; Joosten RP; Perrakis A Life Sci Alliance; 2023 Sep; 6(9):. PubMed ID: 37328191 [TBL] [Abstract][Full Text] [Related]
19. Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Nguyen VS; Spinelli S; Desmyter A; Le TT; Kellenberger C; Cascales E; Cambillau C; Roussel A Acta Crystallogr F Struct Biol Commun; 2015 Mar; 71(Pt 3):266-71. PubMed ID: 25760699 [TBL] [Abstract][Full Text] [Related]
20. Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region. Soler MA; Medagli B; Wang J; Oloketuyi S; Bajc G; Huang H; Fortuna S; de Marco A Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33530572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]