These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30387773)
21. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. DiPaolo C; Kieft R; Cross M; Sabatini R Mol Cell; 2005 Feb; 17(3):441-51. PubMed ID: 15694344 [TBL] [Abstract][Full Text] [Related]
22. Evidence that J-binding protein 2 is a thymidine hydroxylase catalyzing the first step in the biosynthesis of DNA base J. Vainio S; Genest PA; ter Riet B; van Luenen H; Borst P Mol Biochem Parasitol; 2009 Apr; 164(2):157-61. PubMed ID: 19114062 [TBL] [Abstract][Full Text] [Related]
23. Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Bloch JS; Mukherjee S; Kowal J; Filippova EV; Niederer M; Pardon E; Steyaert J; Kossiakoff AA; Locher KP Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782475 [TBL] [Abstract][Full Text] [Related]
24. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments. Tabares-da Rosa S; Wogulis LA; Wogulis MD; González-Sapienza G; Wilson DK J Mol Recognit; 2019 Jan; 32(1):e2755. PubMed ID: 30033524 [TBL] [Abstract][Full Text] [Related]
25. Production, crystallization and preliminary X-ray diffraction of the Gαs α-helical domain in complex with a nanobody. Triest S; Wohlkönig A; Pardon E; Steyaert J Acta Crystallogr F Struct Biol Commun; 2014 Nov; 70(Pt 11):1504-7. PubMed ID: 25372817 [TBL] [Abstract][Full Text] [Related]
26. The structure of a haemoglobin-nanobody complex reveals human β-subunit-specific interactions. Fox DR; Samuels I; Binks S; Grinter R FEBS Lett; 2024 Sep; 598(18):2240-2248. PubMed ID: 38880764 [TBL] [Abstract][Full Text] [Related]
27. JBP1 and JBP2 proteins are Fe2+/2-oxoglutarate-dependent dioxygenases regulating hydroxylation of thymidine residues in trypanosome DNA. Cliffe LJ; Hirsch G; Wang J; Ekanayake D; Bullard W; Hu M; Wang Y; Sabatini R J Biol Chem; 2012 Jun; 287(24):19886-95. PubMed ID: 22514282 [TBL] [Abstract][Full Text] [Related]
28. Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Bekesi A; Abdellaoui S; Holroyd N; Van Delm W; Pardon E; Pauwels J; Gevaert K; Steyaert J; Derveaux S; Borysik A; Tompa P Methods Enzymol; 2018; 611():607-675. PubMed ID: 30471702 [TBL] [Abstract][Full Text] [Related]
29. A nanobody suite for yeast scaffold nucleoporins provides details of the nuclear pore complex structure. Nordeen SA; Andersen KR; Knockenhauer KE; Ingram JR; Ploegh HL; Schwartz TU Nat Commun; 2020 Dec; 11(1):6179. PubMed ID: 33268786 [TBL] [Abstract][Full Text] [Related]
31. The modified base J is the target for a novel DNA-binding protein in kinetoplastid protozoans. Cross M; Kieft R; Sabatini R; Wilm M; de Kort M; van der Marel GA; van Boom JH; van Leeuwen F; Borst P EMBO J; 1999 Nov; 18(22):6573-81. PubMed ID: 10562569 [TBL] [Abstract][Full Text] [Related]
32. The molecular mechanism of Shiga toxin Stx2e neutralization by a single-domain antibody targeting the cell receptor-binding domain. Lo AW; Moonens K; De Kerpel M; Brys L; Pardon E; Remaut H; De Greve H J Biol Chem; 2014 Sep; 289(36):25374-81. PubMed ID: 25053417 [TBL] [Abstract][Full Text] [Related]
33. Nanobody(R)-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nguyen-Duc T; Peeters E; Muyldermans S; Charlier D; Hassanzadeh-Ghassabeh G Nucleic Acids Res; 2013 Mar; 41(5):e59. PubMed ID: 23275538 [TBL] [Abstract][Full Text] [Related]
34. Viral infection modulation and neutralization by camelid nanobodies. Desmyter A; Farenc C; Mahony J; Spinelli S; Bebeacua C; Blangy S; Veesler D; van Sinderen D; Cambillau C Proc Natl Acad Sci U S A; 2013 Apr; 110(15):E1371-9. PubMed ID: 23530214 [TBL] [Abstract][Full Text] [Related]
35. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes. Fridy PC; Thompson MK; Ketaren NE; Rout MP Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320 [TBL] [Abstract][Full Text] [Related]
36. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Ferrari D; Garrapa V; Locatelli M; Bolchi A Mol Biotechnol; 2020 Jan; 62(1):43-55. PubMed ID: 31720928 [TBL] [Abstract][Full Text] [Related]
37. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Zhang L; Wang L; Cao S; Lv H; Huang J; Zhang G; Tabynov K; Zhao Q; Zhou EM Vet Res; 2021 Feb; 52(1):25. PubMed ID: 33596995 [TBL] [Abstract][Full Text] [Related]
38. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Liu B; Yang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163405 [TBL] [Abstract][Full Text] [Related]
39. Development, Screening, and Validation of Camelid-Derived Nanobodies for Neuroscience Research. Gavira-O'Neill CE; Dong JX; Trimmer JS Curr Protoc Neurosci; 2020 Dec; 94(1):e107. PubMed ID: 33185319 [TBL] [Abstract][Full Text] [Related]
40. Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights. Gray ER; Brookes JC; Caillat C; Turbé V; Webb BLJ; Granger LA; Miller BS; McCoy LE; El Khattabi M; Verrips CT; Weiss RA; Duffy DM; Weissenhorn W; McKendry RA ACS Infect Dis; 2017 Jul; 3(7):479-491. PubMed ID: 28591513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]