These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30387801)

  • 1. Electronic spectrum and characterization of diabatic potential energy surfaces for thiophenol.
    Zhang L; Truhlar DG; Sun S
    Phys Chem Chem Phys; 2018 Nov; 20(44):28144-28154. PubMed ID: 30387801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole.
    Li SL; Xu X; Truhlar DG
    Phys Chem Chem Phys; 2015 Aug; 17(31):20093-9. PubMed ID: 26088195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.
    Xu X; Yang KR; Truhlar DG
    J Chem Theory Comput; 2013 Aug; 9(8):3612-25. PubMed ID: 26584115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a single-reference approach provide a balanced description of ground and excited states? A comparison of the completely renormalized equation-of-motion coupled-cluster method with multireference quasidegenerate perturbation theory near a conical intersection and along a photodissociation coordinate in ammonia.
    Nangia S; Truhlar DG; McGuire MJ; Piecuch P
    J Phys Chem A; 2005 Dec; 109(51):11643-6. PubMed ID: 16366611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of photoinduced H-atom elimination in thiophenol.
    Venkatesan TS; Ramesh SG; Lan Z; Domcke W
    J Chem Phys; 2012 May; 136(17):174312. PubMed ID: 22583235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio study of the VUV-induced multistate photodynamics of formaldehyde.
    Gómez-Carrasco S; Müller T; Köppel H
    J Phys Chem A; 2010 Nov; 114(43):11436-49. PubMed ID: 20931949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states.
    Kowalski K; Piecuch P
    J Chem Phys; 2004 Jan; 120(4):1715-38. PubMed ID: 15268302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Excitation of
    Ning J; Truhlar DG
    J Phys Chem A; 2023 Feb; 127(6):1469-1474. PubMed ID: 36749710
    [No Abstract]   [Full Text] [Related]  

  • 10. Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane.
    Valero R; Song L; Gao J; Truhlar DG
    J Chem Theory Comput; 2009 Jan; 5(1):1-22. PubMed ID: 20047005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical.
    Young RA; Yarkony DR
    J Chem Phys; 2006 Dec; 125(23):234301. PubMed ID: 17190552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.
    Li SL; Xu X; Hoyer CE; Truhlar DG
    J Phys Chem Lett; 2015 Sep; 6(17):3352-9. PubMed ID: 26267410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Diabatic Potential Energy Surfaces for the Photodissociation of Thiophenol.
    Lin GS; Xie C; Xie D
    J Phys Chem A; 2017 Nov; 121(44):8432-8439. PubMed ID: 29045150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved quasi-diabatic representation of the 1, 2, 3(1)A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates.
    Zhu X; Malbon CL; Yarkony DR
    J Chem Phys; 2016 Mar; 144(12):124312. PubMed ID: 27036453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.
    Casanova D
    J Chem Phys; 2012 Aug; 137(8):084105. PubMed ID: 22938216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
    Nangia S; Truhlar DG
    J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonadiabatic Effect in Photodissociation Dynamics of Thiophenol via the
    Lin GS; Xie C; Xie D
    J Phys Chem A; 2018 Jun; 122(24):5375-5382. PubMed ID: 29856220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiglobal diabatic potential energy matrix for the N-H photodissociation of methylamine.
    Parker KA; Truhlar DG
    J Chem Phys; 2020 Jun; 152(24):244309. PubMed ID: 32610943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.
    Li SL; Truhlar DG
    J Chem Phys; 2017 Feb; 146(6):064301. PubMed ID: 28201879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical study of the photodissociation reaction of thiophenol at 243 nm: intramolecular orbital alignment of the phenylthiyl radical.
    Lim IS; Lim JS; Lee YS; Kim SK
    J Chem Phys; 2007 Jan; 126(3):034306. PubMed ID: 17249870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.