BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30387919)

  • 1. Strategies for Pathway Analysis Using GWAS and WGS Data.
    White MJ; Yaspan BL; Veatch OJ; Goddard P; Risse-Adams OS; Contreras MG
    Curr Protoc Hum Genet; 2019 Jan; 100(1):e79. PubMed ID: 30387919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for pathway analysis from GWAS data.
    Yaspan BL; Veatch OJ
    Curr Protoc Hum Genet; 2011 Oct; Chapter 1():Unit1.20. PubMed ID: 21975938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.
    Wu Y; Zheng Z; Visscher PM; Yang J
    Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting epistasis in human complex traits.
    Wei WH; Hemani G; Haley CS
    Nat Rev Genet; 2014 Nov; 15(11):722-33. PubMed ID: 25200660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system-level pathway-phenotype association analysis using synthetic feature random forest.
    Pan Q; Hu T; Malley JD; Andrew AS; Karagas MR; Moore JH
    Genet Epidemiol; 2014 Apr; 38(3):209-19. PubMed ID: 24535726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pursuit of genome-wide association studies: where are we now?
    Ku CS; Loy EY; Pawitan Y; Chia KS
    J Hum Genet; 2010 Apr; 55(4):195-206. PubMed ID: 20300123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.
    Luo L; Zhu Y; Xiong M
    J Comput Biol; 2012 Jun; 19(6):731-44. PubMed ID: 22651812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.
    Karim S; NourEldin HF; Abusamra H; Salem N; Alhathli E; Dudley J; Sanderford M; Scheinfeldt LB; Chaudhary AG; Al-Qahtani MH; Kumar S
    BMC Genomics; 2016 Oct; 17(Suppl 9):770. PubMed ID: 27766955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease.
    Liu J; Zhou Y; Liu S; Song X; Yang XZ; Fan Y; Chen W; Akdemir ZC; Yan Z; Zuo Y; Du R; Liu Z; Yuan B; Zhao S; Liu G; Chen Y; Zhao Y; Lin M; Zhu Q; Niu Y; Liu P; Ikegawa S; Song YQ; Posey JE; Qiu G; ; Zhang F; Wu Z; Lupski JR; Wu N
    Hum Genet; 2018 Jul; 137(6-7):553-567. PubMed ID: 30019117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study.
    Mhatre S; Wang Z; Nagrani R; Badwe R; Chiplunkar S; Mittal B; Yadav S; Zhang H; Chung CC; Patil P; Chanock S; Dikshit R; Chatterjee N; Rajaraman P
    Lancet Oncol; 2017 Apr; 18(4):535-544. PubMed ID: 28274756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations.
    Pulit SL; de With SA; de Bakker PI
    Genet Epidemiol; 2017 Feb; 41(2):145-151. PubMed ID: 27990689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel approach to functional SNPs discovery from genome-wide data reveals promising variants for colon cancer risk.
    Korbolina EE; Brusentsov II; Bryzgalov LO; Leberfarb EY; Degtyareva AO; Merkulova TI
    Hum Mutat; 2018 Jun; 39(6):851-859. PubMed ID: 29573091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of Non-Variant Sites to Improve the Clinical Assessment of Whole-Genome Sequence Data.
    Ferrarini A; Xumerle L; Griggio F; Garonzi M; Cantaloni C; Centomo C; Vargas SM; Descombes P; Marquis J; Collino S; Franceschi C; Garagnani P; Salisbury BA; Harvey JM; Delledonne M
    PLoS One; 2015; 10(7):e0132180. PubMed ID: 26147798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits.
    Weissenkampen JD; Jiang Y; Eckert S; Jiang B; Li B; Liu DJ
    Curr Protoc Hum Genet; 2019 Apr; 101(1):e83. PubMed ID: 30849219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods for genome-wide association studies.
    Wang MH; Cordell HJ; Van Steen K
    Semin Cancer Biol; 2019 Apr; 55():53-60. PubMed ID: 29727703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
    Cantor RM; Lange K; Sinsheimer JS
    Am J Hum Genet; 2010 Jan; 86(1):6-22. PubMed ID: 20074509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine.
    McKinney BA; Lareau C; Oberg AL; Kennedy RB; Ovsyannikova IG; Poland GA
    PLoS One; 2016; 11(8):e0158016. PubMed ID: 27513748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing.
    Caylak G; Tastan O; Cicek AE
    J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.