These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30388198)

  • 1. Bastion3: a two-layer ensemble predictor of type III secreted effectors.
    Wang J; Li J; Yang B; Xie R; Marquez-Lago TT; Leier A; Hayashida M; Akutsu T; Zhang Y; Chou KC; Selkrig J; Zhou T; Song J; Lithgow T
    Bioinformatics; 2019 Jun; 35(12):2017-2028. PubMed ID: 30388198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors.
    Wang J; Yang B; Leier A; Marquez-Lago TT; Hayashida M; Rocker A; Zhang Y; Akutsu T; Chou KC; Strugnell RA; Song J; Lithgow T
    Bioinformatics; 2018 Aug; 34(15):2546-2555. PubMed ID: 29547915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T3SEpp: an Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors.
    Hui X; Chen Z; Lin M; Zhang J; Hu Y; Zeng Y; Cheng X; Ou-Yang L; Sun MA; White AP; Wang Y
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32753503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence.
    Xue L; Tang B; Chen W; Luo J
    Bioinformatics; 2019 Jun; 35(12):2051-2057. PubMed ID: 30407530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EP3: an ensemble predictor that accurately identifies type III secreted effectors.
    Li J; Wei L; Guo F; Zou Q
    Brief Bioinform; 2021 Mar; 22(2):1918-1928. PubMed ID: 32043137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
    Xie R; Li J; Wang J; Dai W; Leier A; Marquez-Lago TT; Akutsu T; Lithgow T; Song J; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32599617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLM-T3SE: Accurate Prediction of Type III Secretion Effectors Using Protein Language Model Embeddings.
    Gao M; Song C; Liu T
    J Cell Biochem; 2024 Aug; ():e30642. PubMed ID: 39164870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of type III secreted proteins from gram-negative bacteria.
    Yang Y; Zhao J; Morgan RL; Ma W; Jiang T
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S47. PubMed ID: 20122221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework.
    Jing R; Wen T; Liao C; Xue L; Liu F; Yu L; Luo J
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab086. PubMed ID: 34617013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACNNT3: Attention-CNN Framework for Prediction of Sequence-Based Bacterial Type III Secreted Effectors.
    Li J; Li Z; Luo J; Yao Y
    Comput Math Methods Med; 2020; 2020():3974598. PubMed ID: 32328150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iT3SE-PX: Identification of Bacterial Type III Secreted Effectors Using PSSM Profiles and XGBoost Feature Selection.
    Ding C; Han H; Li Q; Yang X; Liu T
    Comput Math Methods Med; 2021; 2021():6690299. PubMed ID: 33505516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.
    Dong X; Lu X; Zhang Z
    Database (Oxford); 2015; 2015():bav064. PubMed ID: 26120140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Secretion System Effector Proteins With Structure-Aware Graph Neural Networks and Pre-Trained Language Models.
    Ran Z; Wang C; Sun H; Pan S; Li F
    IEEE J Biomed Health Inform; 2024 Sep; 28(9):5649-5657. PubMed ID: 38865232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI.
    An Y; Wang J; Li C; Leier A; Marquez-Lago T; Wilksch J; Zhang Y; Webb GI; Song J; Lithgow T
    Brief Bioinform; 2018 Jan; 19(1):148-161. PubMed ID: 27777222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches.
    Wang J; Yang B; An Y; Marquez-Lago T; Leier A; Wilksch J; Hong Q; Zhang Y; Hayashida M; Akutsu T; Webb GI; Strugnell RA; Song J; Lithgow T
    Brief Bioinform; 2019 May; 20(3):931-951. PubMed ID: 29186295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles.
    Wang J; Yang B; Revote J; Leier A; Marquez-Lago TT; Webb G; Song J; Chou KC; Lithgow T
    Bioinformatics; 2017 Sep; 33(17):2756-2758. PubMed ID: 28903538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens.
    Stavrinides J; Ma W; Guttman DS
    PLoS Pathog; 2006 Oct; 2(10):e104. PubMed ID: 17040127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new feature selection method for computational prediction of type III secreted effectors.
    Yang Y; Qi S
    Int J Data Min Bioinform; 2014; 10(4):440-54. PubMed ID: 25946888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.