These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30388413)

  • 41. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A transient intermediate RNA structure underlies the regulatory function of the
    Berman KE; Steans R; Hertz LM; Lucks JB
    RNA; 2023 Nov; 29(11):1658-1672. PubMed ID: 37419663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation.
    Chauvier A; Picard-Jean F; Berger-Dancause JC; Bastet L; Naghdi MR; Dubé A; Turcotte P; Perreault J; Lafontaine DA
    Nat Commun; 2017 Jan; 8():13892. PubMed ID: 28071751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome-Wide Effects of NusA on RNA Polymerase Pausing in Bacillus subtilis.
    Jayasinghe OT; Mandell ZF; Yakhnin AV; Kashlev M; Babitzke P
    J Bacteriol; 2022 May; 204(5):e0053421. PubMed ID: 35258320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28703767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics.
    Ray S; Chauvier A; Walter NG
    RNA Biol; 2019 Sep; 16(9):1077-1085. PubMed ID: 30328748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism.
    Dussault AM; Dubé A; Jacques F; Grondin JP; Lafontaine DA
    RNA; 2017 Oct; 23(10):1539-1551. PubMed ID: 28701520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
    St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA
    Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.
    Bao Y; Cao X; Landick R
    Nucleic Acids Res; 2024 May; 52(8):4556-4574. PubMed ID: 38554114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity.
    Polaski JT; Kletzien OA; Drogalis LK; Batey RT
    Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor.
    Bao Y; Landick R
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34470825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation.
    Chauvier A; Walter NG
    Curr Opin Struct Biol; 2024 Oct; 88():102893. PubMed ID: 39067113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.