These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30388564)
1. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Lee I; Loew N; Tsugawa W; Ikebukuro K; Sode K Biosens Bioelectron; 2019 Jan; 124-125():216-223. PubMed ID: 30388564 [TBL] [Abstract][Full Text] [Related]
2. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor. Lee I; Wakako T; Ikebukuro K; Sode K J Diabetes Sci Technol; 2022 Sep; 16(5):1107-1113. PubMed ID: 35466718 [TBL] [Abstract][Full Text] [Related]
3. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring. Inoue Y; Kusaka Y; Shinozaki K; Lee I; Sode K J Diabetes Sci Technol; 2022 Sep; 16(5):1101-1106. PubMed ID: 34986665 [TBL] [Abstract][Full Text] [Related]
5. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794 [TBL] [Abstract][Full Text] [Related]
6. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282 [TBL] [Abstract][Full Text] [Related]
7. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265 [TBL] [Abstract][Full Text] [Related]
8. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Okuda-Shimazaki J; Yoshida H; Sode K Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457 [TBL] [Abstract][Full Text] [Related]
9. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors. Ito K; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Asano R; Ikebukuro K; Sode K Biosens Bioelectron; 2021 Mar; 176():112911. PubMed ID: 33421758 [TBL] [Abstract][Full Text] [Related]
10. Transient potentiometry based d-serine sensor using engineered d-amino acid oxidase showing quasi-direct electron transfer property. Takamatsu S; Lee I; Lee J; Asano R; Tsugawa W; Ikebukuro K; Dick JE; Sode K Biosens Bioelectron; 2022 Mar; 200():113927. PubMed ID: 34995837 [TBL] [Abstract][Full Text] [Related]
11. Reconstructing by deconvolution plasma glucose from continuous glucose monitoring sensor data. Facchinetti A; Sparacino G; Zanderigo F; Cobelli C Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():55-8. PubMed ID: 17946377 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the stability of Mucor-derived flavin adenine dinucleotide-dependent glucose dehydrogenase and glucose oxidase. Masakari Y; Hara C; Nakazawa H; Ichiyanagi A; Umetsu M J Biosci Bioeng; 2022 Oct; 134(4):307-310. PubMed ID: 35927131 [TBL] [Abstract][Full Text] [Related]
13. Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices. Facchinetti A; Del Favero S; Sparacino G; Cobelli C Med Biol Eng Comput; 2015 Dec; 53(12):1259-69. PubMed ID: 25416850 [TBL] [Abstract][Full Text] [Related]
14. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Kovatchev BP; Patek SD; Ortiz EA; Breton MD Diabetes Technol Ther; 2015 Mar; 17(3):177-86. PubMed ID: 25436913 [TBL] [Abstract][Full Text] [Related]
15. Interference Assessment of Various Endogenous and Exogenous Substances on the Performance of the Eversense Long-Term Implantable Continuous Glucose Monitoring System. Lorenz C; Sandoval W; Mortellaro M Diabetes Technol Ther; 2018 May; 20(5):344-352. PubMed ID: 29600877 [TBL] [Abstract][Full Text] [Related]
16. Overview of a novel sensor for continuous glucose monitoring. Schmelzeisen-Redeker G; Staib A; Strasser M; Müller U; Schoemaker M J Diabetes Sci Technol; 2013 Jul; 7(4):808-14. PubMed ID: 23911161 [TBL] [Abstract][Full Text] [Related]
17. Improved Accuracy of Continuous Glucose Monitoring Systems in Pediatric Patients with Diabetes Mellitus: Results from Two Studies. Laffel L Diabetes Technol Ther; 2016 Feb; 18 Suppl 2(Suppl 2):S223-33. PubMed ID: 26784126 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959 [TBL] [Abstract][Full Text] [Related]