These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30388572)
1. Mechanical properties of the Papio anubis tympanic membrane: Change significantly from infancy to adulthood. Liang J; Smith KD; Lu H; Seale TW; Gan RZ Hear Res; 2018 Dec; 370():143-154. PubMed ID: 30388572 [TBL] [Abstract][Full Text] [Related]
2. Mechanical Properties of Baboon Tympanic Membrane from Young to Adult. Liang J; Engles WG; Smith KD; Dai C; Gan RZ J Assoc Res Otolaryngol; 2020 Oct; 21(5):395-407. PubMed ID: 32783162 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection. Liang J; Luo H; Yokell Z; Nakmali DU; Gan RZ; Lu H Hear Res; 2016 Sep; 339():1-11. PubMed ID: 27240479 [TBL] [Abstract][Full Text] [Related]
4. The effect of blast overpressure on the mechanical properties of the human tympanic membrane. Liang J; Smith KD; Gan RZ; Lu H J Mech Behav Biomed Mater; 2019 Dec; 100():103368. PubMed ID: 31473437 [TBL] [Abstract][Full Text] [Related]
5. Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model. Yu YC; Wang TC; Shih TC Comput Methods Programs Biomed; 2022 Mar; 215():106619. PubMed ID: 35038652 [TBL] [Abstract][Full Text] [Related]
6. The effect of blast overpressure on the mechanical properties of a chinchilla tympanic membrane. Liang J; Yokell ZA; Nakmaili DU; Gan RZ; Lu H Hear Res; 2017 Oct; 354():48-55. PubMed ID: 28866319 [TBL] [Abstract][Full Text] [Related]
7. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. O'Connor KN; Cai H; Puria S J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Aernouts J; Aerts JR; Dirckx JJ Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920 [TBL] [Abstract][Full Text] [Related]
9. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears. Gaihede M; Liao D; Gregersen H Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122 [TBL] [Abstract][Full Text] [Related]
10. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415 [TBL] [Abstract][Full Text] [Related]
11. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation. Luo H; Wang F; Cheng C; Nakmali DU; Gan RZ; Lu H Hear Res; 2019 Jul; 378():75-91. PubMed ID: 30853348 [TBL] [Abstract][Full Text] [Related]
12. Measurement of young's modulus of human tympanic membrane at high strain rates. Luo H; Dai C; Gan RZ; Lu H J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. Daphalapurkar NP; Dai C; Gan RZ; Lu H J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811 [TBL] [Abstract][Full Text] [Related]
14. A single-ossicle ear: Acoustic response and mechanical properties measured in duck. Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104 [TBL] [Abstract][Full Text] [Related]
15. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique. Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934 [TBL] [Abstract][Full Text] [Related]
16. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus. Aernouts J; Dirckx JJ Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402 [TBL] [Abstract][Full Text] [Related]
17. Dynamic properties of human tympanic membrane based on frequency-temperature superposition. Zhang X; Gan RZ Ann Biomed Eng; 2013 Jan; 41(1):205-14. PubMed ID: 22820983 [TBL] [Abstract][Full Text] [Related]
18. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas. Gan RZ; Nakmali D; Ji XD; Leckness K; Yokell Z Hear Res; 2016 Oct; 340():25-34. PubMed ID: 26807796 [TBL] [Abstract][Full Text] [Related]
19. A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. Huang G; Daphalapurkar NP; Gan RZ; Lu H J Biomech Eng; 2008 Feb; 130(1):014501. PubMed ID: 18298192 [TBL] [Abstract][Full Text] [Related]
20. Bipedality from locomotor autonomy to adulthood in captive olive baboon (Papio anubis): Cross-sectional follow-up and first insight into the impact of body mass distribution. Druelle F; Aerts P; Berillon G Am J Phys Anthropol; 2016 Jan; 159(1):73-84. PubMed ID: 26293421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]