BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30388588)

  • 1. Stereo-preference of camphor for H-bonding with phenol, methanol and chloroform: A combined matrix isolation IR spectroscopic and quantum chemical investigation.
    Banerjee P; Pandey P; Bandyopadhyay B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():186-195. PubMed ID: 30388588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer.
    Schlichting I; Jung C; Schulze H
    FEBS Lett; 1997 Oct; 415(3):253-7. PubMed ID: 9357977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam.
    Basom EJ; Manifold BA; Thielges MC
    Biochemistry; 2017 Jun; 56(25):3248-3256. PubMed ID: 28581729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism.
    Schöneboom JC; Cohen S; Lin H; Shaik S; Thiel W
    J Am Chem Soc; 2004 Mar; 126(12):4017-34. PubMed ID: 15038756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.
    Deprez E; Gill E; Helms V; Wade RC; Hui Bon Hoa G
    J Inorg Biochem; 2002 Sep; 91(4):597-606. PubMed ID: 12237225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic pathway of cytochrome p450cam at atomic resolution.
    Schlichting I; Berendzen J; Chu K; Stock AM; Maves SA; Benson DE; Sweet RM; Ringe D; Petsko GA; Sligar SG
    Science; 2000 Mar; 287(5458):1615-22. PubMed ID: 10698731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of alcohols on binding of camphor to cytochrome P450cam: spectroscopic and stopped flow transient kinetic studies.
    Murugan R; Mazumdar S
    Arch Biochem Biophys; 2006 Nov; 455(2):154-62. PubMed ID: 17049478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding.
    Skinner SP; Follmer AH; Ubbink M; Poulos TL; Houwing-Duistermaat JJ; Paci E
    Biochemistry; 2021 Oct; 60(39):2932-2942. PubMed ID: 34519197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicopy molecular dynamics simulations suggest how to reconcile crystallographic and product formation data for camphor enantiomers bound to cytochrome P-450cam.
    Das B; Helms V; Lounnas V; Wade RC
    J Inorg Biochem; 2000 Aug; 81(3):121-31. PubMed ID: 11051557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the cytochrome p450cam mutant that exhibits the same spectral perturbations induced by putidaredoxin binding.
    Nagano S; Tosha T; Ishimori K; Morishima I; Poulos TL
    J Biol Chem; 2004 Oct; 279(41):42844-9. PubMed ID: 15269210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton relay network in P450cam formed upon docking of putidaredoxin.
    Ugur I; Chandrasekhar P
    Proteins; 2020 Apr; 88(4):558-572. PubMed ID: 31597203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam.
    Nagano S; Shimada H; Tarumi A; Hishiki T; Kimata-Ariga Y; Egawa T; Suematsu M; Park SY; Adachi S; Shiro Y; Ishimura Y
    Biochemistry; 2003 Dec; 42(49):14507-14. PubMed ID: 14661963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural alterations of the heme environment of cytochrome P450cam and the Y96F mutant as deduced by resonance Raman spectroscopy.
    Niaura G; Reipa V; Mayhew MP; Holden M; Vilker VL
    Arch Biochem Biophys; 2003 Jan; 409(1):102-12. PubMed ID: 12464249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding induces structural changes in cytochrome P450cam.
    Sakurai K; Shimada H; Hayashi T; Tsukihara T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Feb; 65(Pt 2):80-3. PubMed ID: 19193991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor.
    Schulze H; Hoa GH; Helms V; Wade RC; Jung C
    Biochemistry; 1996 Nov; 35(45):14127-38. PubMed ID: 8916898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of CYP101D2 unveils a potential path for substrate entry into the active site.
    Yang W; Bell SG; Wang H; Zhou W; Bartlam M; Wong LL; Rao Z
    Biochem J; 2011 Jan; 433(1):85-93. PubMed ID: 20950270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.